Efecto de los módulos SiO2 /Al2 O3 y Na2 O/SiO2 en las propiedades de sistemas geopoliméricos basados en un metacaolín

Autores/as

  • Erich Rodríguez Universidad del Valle
  • Ruby Mejía de Gutiérrez Universidad del Valle
  • Susan Bernal Universidad del Valle
  • Marisol Gordillo Universidad del Valle

DOI:

https://doi.org/10.17533/udea.redin.15884

Palabras clave:

Geopolímeros, metacaolín, activación alcalina, nuevos cerámicos

Resumen

En este artículo se analiza el efecto de las relaciones molares SiO2/Al2O3 (3,0 - 4,0) y Na2O/SiO2 (0,25 - 0,40) en la resistencia a compresión y contracción autógena de sistemas geopoliméricos basados en metacaolín (MK) activado con una solución de silicato de sodio e hidróxido de sodio. Para tal efecto, se produjeron 16 tipos de mezclas geopoliméricas evaluándose en cada una la resistencia a la compresión a edad de 7 días de curado y el porcentaje de contracción autógena. Complementariamente, los materiales producidos se caracterizaron utilizando diferentes técnicas, tales como, difracción de rayos X (DRX), espectroscopia de infrarrojo por transformada de Fourier (IR) y termogravimetría (TGA). Los resultados revelan que las propiedades de los sistemas geopoliméricos son afectadas por las proporciones de Silicio (Si), Aluminio (Al) y Sodio (Na) disponibles en la reacción de geopolimerización, las cuales a su vez determinan la microestructura del material. El mejor desempeño mecánico a edades tempranas y la mínima contracción fue obtenida con una relación SiO2/Al2O3 de 3,0 y Na2O/SiO2 de 0,25.

|Resumen
= 243 veces | PDF
= 163 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Erich Rodríguez , Universidad del Valle

Grupo de Materiales Compuestos

Ruby Mejía de Gutiérrez, Universidad del Valle

Grupo de Materiales Compuestos

Susan Bernal, Universidad del Valle

Grupo de Materiales Compuestos

Marisol Gordillo, Universidad del Valle

Grupo de Materiales Compuestos

Citas

J. Davidovits. Mineral Polymers and Methods of making them. U.S. Patent No. 4,349,386. 1982.

O. Purdon. “The action of alkalis on blast-furnace slag”. J. Soc. Chem. Ind. Trans. Commun. Vol. 59. 1940. pp. 191-202.

J. Davidovits. GEOPOLYMERS: Man-Made Rock Geosynthesis and the Resulting Development of very early strength Cement. J. Mat. Educt. Vol. 16. pp. 91- 139.

A. Palomo, F.P. Glasser. “Chemically-bonded cementitious materials based on metakaolin”. Brit. Cer. Trans. J. Vol. 91. 1992. pp. 107-112.

H. Rahier, B. Van Mele, M. Biesemans, J. Wastiels, X. Wu. “Low-temperature synthesized aluminosilicate glasses: Part I. Low-temperature reaction stoichiometry and structure of a model compound”. J. Mat. Sci. Vol. 31. 1996. pp. 71-79.

H. Xu, J. S. J. Van Deventer. “The geopolymerisation of alumino-silicate minerals”. Int. J. Miner. Proc. Vol. 59. 2000. pp. 247-266.

J. G. S. Van Jaarsveld, J. S. J. Van Deventer, L. Lorenzen. “The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications”. Miner. Eng. Vol. 10. 1997. pp. 659-669.

T. W. Cheng, J. P. Chin. “Fire-resistant geopolymer produce by granulated blast furnace slag”. Miner. Eng. Vol. 16. 2003. pp. 205-210.

H. Xu, J. S. J. Van Deventer. “Geopolymerisation of multiple minerals”. Miner. Eng. Vol. 15. 2002. pp. 1131-1139.

J. Davidovits. “Geopolymers: Inorganic polymeric new materials”. J. Ther. Anal. Vol. 37. 1991. pp. 1633- 1656.

D Khale, R. Chaudhary. “Mechanism of geopolymerization and factors influencing its development: a review”. J. Mater. Sci. Vol. 42. 2007. pp. 729-746

R. Mejía de Gutiérrez, J. Torres, C. Vizcayno, R. Castello. “Influence of the calcination temperature of kaolin on the mechanical properties of mortars and concretes containing metakaolin”. Clay Miner. Vol. 43. 2008. pp. 177-183.

W. K. W. Lee, J. S. J. Van Deventer. “Effects of anions on the formation of aluminosilicate gel in geopolymers”. Ind. Eng. Chem. Res. Vol. 41. 2002. pp. 4550-4558.

R. Cioffi, L. Maffucci, L. Santero. “Optimization of geopolymer synthesis by calcinations and polycondensation of a kaolinitic residue”. Resou. Conserv. . Recyc. Vol. 40. 2003. pp. 27-38

V. F. F. Barbosa, K. J. D. MacKenzie, C. Thaumaturgo. “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers”. Intern. J. Inorg. Mat. Vol 2. 2000. pp 309-317.

J. Davidovits. “Properties of geopolymer cements” Proc. 1st International Conference Alkaline Cements and Concretes. Kiev, Ukraine. 1994. pp. 131-149.

J. W. Phair, J. S. J. Van Deventer. “Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers”. Miner. Eng. Vol. 14. 2001. pp. 289-304.

P. De Silva, K.Sagoe-Crenstil. “Medium-term phase stability of Na2O–Al2O3–SiO2–H2O geopolymer systems”. Cem .Concr. Res. Vol 38. 2008. pp. 870-876.

L. Weng, K. Sagoe-Crentsil, T. Brown. “Speciation and hydrolysis kinetics of aluminates in inorganic polymer systems” International Conference Proceedings of Geopolymer. Melbourne, Australia. 2002.

J. L Provis, G. C Lukey, J. S. J. Van Deventer. “Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results”. Chem. Mater. Vol. 17. 2005. pp. 3075-3085.

J. G. S Van Jaarsveld, J. S. J Van Deventer, G. C. Lukey. “The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics”. Miner. Eng. Vol. 12. 2002. pp. 75-91.

A. Kirschner, H. Harmutharald. “Investigation of geopolymer binders with respect to their application for building materials”. Ceram. Silikáty. Vol. 48. 2004. pp. 117-120.

M. A Cincotto, A. A. Melo, W. L. Repette. “Effect of Different Activators Type and Dosages and Relation to Autogenous Shrinkage of Activated Blast Furnace Slag Cement”. ICC South Africa. 2003. pp. 1878- 1888.

C. J. Brinker, G. W. Scherer. “Sol-Gel Science”. The Physics and Chemistry of Sol- Gel Processing. San Diego. Academic Press. 1990. pp. 980.

F. Puertas, S. Martínez Ramírez, S. Alonso, T. Vázquez. “Alkali-activated flyash/slag cement strength behavior and hydration products”. Cem. Concr. Res. Vol 30. 2000. pp. 1625-1632.

S. Yang, A. Navrotsky, B. L. Phillips. “In situ calorimetric, structural, and compositional study of zeolite synthesis in the system 5.15Na2O-1.00Al2O3- 3.28SiO2-165H2O.” J. Phys. Chem. B. Vol. 104. 2000. pp. 6071-6080.

A. Palomo, M. W. Grutzeck, M. T. Blanco. “Alkali-activated fly ashes: a cement for the future” Cem. Concr. Res. Vol. 29. 1999. pp. 1323-1329.

A. Fernández Jiménez, M. Monzó, M. Vicent, A. Barba, A. Palomo. “Alkaline activation of metakaolin-fly ash mixtures: Obtain of Zeoceramics and Zeocements”. Microporous and Mesoporous Mater. Vol. 108. 2008. pp. 41-49.

R. A. Fletcher, K. J. D MacKenzie, C. L. Nicholson, S. Shimada. “The composition range of aluminosilicate polymers”. J. Eur. Ceram. Soc. Vol. 25. 2005. pp. 1471-1477.

P. Duxson, G. C. Lukey, J. S. J. Van Deventer. “Thermal evolution of metakaolin geopolymers: Part 1 – Physical evolution”. J. Non-Crys. Sol. Vol. 352. 2006. pp. 5541-5555.

N. J. Clayden. S. Esposito, A. Aronne, P. Pernice. “Solid State 27Al-NMR and FTIR study of lanthanum aluminosilicate glasses”. J. Non-Crys. Sol. Vol. 258. 1999. pp. 11-19.

W. K. W. Lee, J. S. J. van Deventer. “The effects of inorganic salt contamination on the strength and durability of geopolymers”. Coll. Surf. A. Vol. 211. 2002. pp. 115-126.

P. Duxson, G. C Lukey, J. S. J. Van Deventer. “Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C”. Mat. Sci. Vol. 42. 2007. pp. 3044- 3054.

Descargas

Publicado

2013-07-15

Cómo citar

Rodríguez , E., Mejía de Gutiérrez, R., Bernal, S., & Gordillo, M. (2013). Efecto de los módulos SiO2 /Al2 O3 y Na2 O/SiO2 en las propiedades de sistemas geopoliméricos basados en un metacaolín. Revista Facultad De Ingeniería Universidad De Antioquia, (49), 30–41. https://doi.org/10.17533/udea.redin.15884