New relation to improve the speed and torque characteristics of induction motors

Authors

  • Luis Antonio Mier-Quiroga Instituto Tecnológico de Toluca https://orcid.org/0000-0001-8290-4115
  • Jorge Samuel Benítez-Read Instituto Nacional de Investigaciones Nucleares
  • Régulo López-Callejas Instituto Nacional de Investigaciones Nucleares
  • José Armando Segovia de los Ríos Instituto Nacional de Investigaciones Nucleares

Keywords:

V - f relation, induction motor, speed response

Abstract


Squirrel cage induction motors are employed in a wide variety of applications.  Operating at constant speed is required in some applications, whereas variation  of this parameter is required in others, as in the provision of mechanical energy  to electrical vehicles. The performance of an electric vehicle is specified by  the  characteristics  of  the  electric  motor.  The  adequate  relation  between  the   voltage  magnitude  and  the  frequency  of  its  power  source  makes  the  motor   satisfy the electric vehicle requirements. The voltage magnitude is a function  of  the  frequency  of  operation.  If  the   V  -  f   relation  is  adequate,  the  motor   speed  response  could  be  improved.  A  new   V  -  f   relation  that  improves  the   speed response of the single squirrel cage induction motor is presented and  is defined by a frequency factor. For motor speeds below the nominal value,  the torque capacity of the motor is preserved with the proposed relationship.  

|Abstract
= 20 veces | PDF
= 21 veces|

Downloads

Download data is not yet available.

Author Biographies

Luis Antonio Mier-Quiroga, Instituto Tecnológico de Toluca

Profesor Investigador, División de Ingeniería Electromecánica del Tecnológico de Estudios Superiores

Jorge Samuel Benítez-Read, Instituto Nacional de Investigaciones Nucleares

Actualmente se dedica al diseño, simulación y prueba de sistemas y algoritmos de control para sistemas nucleares. Asimismo, imparte cursos de postgrado desde 1987 en el área de teoría de control.

Régulo López-Callejas, Instituto Nacional de Investigaciones Nucleares

Research

José Armando Segovia de los Ríos, Instituto Nacional de Investigaciones Nucleares

Obtuvo el grado de  Ingeniero Electromecánico en el Instituto Tecnológico de Toluca en 1979. En 1981 obtuvo el grado de Maestro en Ciencias en el Instituto Tecnológico de la Laguna. En 1990 obtiene el Diploma de Estudios Avanzados en Control de Sistemas en la Universidad de Tecnología de Compiègne y en 1993 obtiene  el grado de Doctor en Sistemas Computacionales, opción Control de Sistemas, de la Universidad de Tecnología de Compiègne, Francia. Ha sido Vice-Presidente (1999-2001) y Presidente (2001-2003) de la Academia Nacional de Investigaciones en Robótica, ANIRob 
y Editor de la Asociación Mexicana de Robótica, AMROB. Actualmente trabaja como investigador en el Departamento de Automatización e Instrumentación del Instituto Nacional de Investigaciones Nucleares. Colabora impartiendo cursos de postgrado desde 1987 en el área de robótica móvil y visión artificial en el Instituto Tecnológico de Toluca, Estado de México.

References

C. Chan. “The State of the Art of Electric, Hybrid and Fuel Cell Vehicles”. Proceedings of the IEEE. Vol. 95. 2007. pp. 704-718.

X. Xue, K. Cheng, N. Cheung. Selection of Electric Motors Drives for Electric Vehicles. Proceedings of the Australasian Universities Power Engineering Conference (AUPEC ’08). Sydney, Australia. 2008. pp. 1-6.

E. Beltrán. Control Directo de Par de un Motor de Inducción Trifásico con Aplicación a Vehículos Eléctricos. Master’s Thesis, CENIDET. Cuernavaca, México. 2011. pp. 43-90.

M. Zeraoulia, M. Hachemi, D. Diallo. “Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study”. IEEE Transactions on Vehicular Technology. Vol. 55. 2006. pp. 1756-1764.

I. Kosow. Electric Machinery and Transformers. 2nd ed. Ed. Prentice Hall. New Delhi, India, 1992. pp. 308- 345.

M. Brejl, M. Princ, P. Uhlir. AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500. Application Note. Freescale Semiconductor Inc. Colorado, USA. 2006. pp. 4-10.

R. Araujo, H. Teixeira, J. Barbosa, V. Leite. A Low Cost Induction Motor Controller for Electric Vehicles in Local Areas. Proceedings of the International Symposium on Industrial Electronics, (ISIE). Dubrovnik, Croatia. 2005. pp. 1499-1504.

S. Bowling. An Introduction to AC Induction Motor Control Using the dsPIC30F MCU. Application Note. Microchip Technology Inc. Georgia, USA. 2005. pp. 6-10.

M. Tsuji, S. Chen, S. Hamasaki. A Novel V/f Control of Induction Motors for Wide and Precise Speed Operation. Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). Ischia, Italy. 2008. pp. 1130-1135.

C. Ogbuka, M. Agu. A Modified Approach to Induction Motor Stator Voltage and Frequency Control. Proceedings of the World Congress on Engineering, Vol. II. London, UK. 2011. pp. 44-51.

J. Guzinski, H. Abu. “Sensorless Induction Motor Drive for Electric Vehicle Application”. International Journal of Engineering, Science and Technology. Vol. 2. 2010. pp. 20-34.

M. Ehsani, Y. Gao, J. Miller. “Hybrid Electric Vehicles: Architecture and Motor Drives”. Proceedings of the IEEE. Vol. 95. 2007. pp. 719-728.

A. Arif, A. Betka, A. Guettaf. “Improvement the DTC System for Electric Vehicles Induction Motors”. Serbian Journal of Electrical Engineering. Vol. 7. 2010. pp. 149-165.

A. Fekih. A New Sliding-Mode Based Control Design for Induction Motors Propelling Electric Vehicle Drives. Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision (ICARCV). Hanoi, Vietnam. 2008. pp. 1066- 1071.

A. Hughes. Electric Motor and Drives, Fundamentals, Types and Applications. 3rd ed. Ed. Newnes-Elsevier. Oxford, UK. 2006. pp. 167-263.

J. Cathey. Electric Machines: Analysis and Design Applying MATLAB. 1st ed. Ed. McGraw Hill. Ohio, USA. 2001. pp. 336-350.

M. Haque. “Determination of NEMA design induction motor parameters from manufacturer data”. IEEE Transactions on Energy Conversion. Vol. 23. 2008. pp. 997-1004.

K. Lee, S. Frank, P. Sen, L. Gentile, M. Alahmad, C. Waters. Estimation of Induction Motor Equivalent Circuit Parameters from Nameplate Data. Proceedings of the IEE North American Power Symposium. Champaign, USA. 2012. pp. 1-6.

I. Birou, V. Maier, S. Pavel, C. Rusu. Indirect Vector Control of an Induction Motor with Fuzzy Logic based Speed Controller. Proceedings of the 3rd International Symposium on Electrical Engineering and Energy Converters. Suceava, Rumania. 2009. pp. 149-154.

V. Chitra, R. Prabhakar. Induction Motor Speed Control using Fuzzy Logic Controller. World Academy of Science, Engineering and Technology. Vol. 23. 2006. pp. 17-22.

S. Belkacem, F. Naceri, R. Abdessemed. “Reduction of the Torque Ripple in DTC for Induction Motor Using Input-Output Feedback Linearization”. Serbian Journal of Electrical Engineering. Vol. 8. 2001. pp. 97-110.

A. Arif, A. Betka, A. Guettaf. “Improvement the DTC System for Electric Vehicles Inductions Motors”. Serbian Journal of Electrical Engineering. Vol. 7. 2010. pp. 149-165.

A. Nazeer, A. Sadik, K. Ravi, M. Prasanti. “Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive”. International Journal of Science Engineering and Advance Technology. Vol. 2. 2014. pp. 31-36.

Downloads

Published

2015-02-18

How to Cite

Mier-Quiroga, L. A., Benítez-Read, J. S., López-Callejas, R., & Segovia de los Ríos, J. A. (2015). New relation to improve the speed and torque characteristics of induction motors. Revista Facultad De Ingeniería Universidad De Antioquia, (74), 37–49. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/17572