New relation to improve the speed and torque characteristics of induction motors

Authors

  • Luis Antonio Mier-Quiroga Technological Institute of Toluca https://orcid.org/0000-0001-8290-4115
  • Jorge Samuel Benítez-Read National Institute of Nuclear Research
  • Régulo López-Callejas National Institute of Nuclear Research
  • José Armando Segovia-de-los-Ríos National Institute of Nuclear Research

DOI:

https://doi.org/10.17533/udea.redin.17572

Keywords:

V - f relation, induction motor, speed response

Abstract

Squirrel cage induction motors are employed in a wide variety of applications.  Operating at constant speed is required in some applications, whereas variation  of this parameter is required in others, as in the provision of mechanical energy  to electrical vehicles. The performance of an electric vehicle is specified by  the  characteristics  of  the  electric  motor.  The  adequate  relation  between  the   voltage  magnitude  and  the  frequency  of  its  power  source  makes  the  motor   satisfy the electric vehicle requirements. The voltage magnitude is a function  of  the  frequency  of  operation.  If  the   V  -  f   relation  is  adequate,  the  motor   speed  response  could  be  improved.  A  new   V  -  f   relation  that  improves  the   speed response of the single squirrel cage induction motor is presented and  is defined by a frequency factor. For motor speeds below the nominal value,  the torque capacity of the motor is preserved with the proposed relationship.

|Abstract
= 202 veces | PDF
= 100 veces|

Downloads

Download data is not yet available.

Author Biographies

Luis Antonio Mier-Quiroga, Technological Institute of Toluca

Research Professor, Division of Electromechanical Engineering of the Technological Institute of Higher Studies.

Jorge Samuel Benítez-Read, National Institute of Nuclear Research

He is currently dedicated to the design, simulation and testing of control systems and algorithms for nuclear systems. Likewise, he has taught postgraduate courses since 1987 in the area of control theory.

Régulo López-Callejas, National Institute of Nuclear Research

Research.

José Armando Segovia-de-los-Ríos, National Institute of Nuclear Research

Postgraduate Studies and Research Division, Toluca Institute of Technology.

References

C. Chan. “The State of the Art of Electric, Hybrid and Fuel Cell Vehicles”. Proceedings of the IEEE. Vol. 95. 2007. pp. 704-718. DOI: https://doi.org/10.1109/JPROC.2007.892489

X. Xue, K. Cheng, N. Cheung. Selection of Electric Motors Drives for Electric Vehicles. Proceedings of the Australasian Universities Power Engineering Conference (AUPEC ’08). Sydney, Australia. 2008. pp. 1-6.

E. Beltrán. Control Directo de Par de un Motor de Inducción Trifásico con Aplicación a Vehículos Eléctricos. Master’s Thesis, CENIDET. Cuernavaca, México. 2011. pp. 43-90.

M. Zeraoulia, M. Hachemi, D. Diallo. “Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study”. IEEE Transactions on Vehicular Technology. Vol. 55. 2006. pp. 1756-1764. DOI: https://doi.org/10.1109/TVT.2006.878719

I. Kosow. Electric Machinery and Transformers. 2nd ed. Ed. Prentice Hall. New Delhi, India, 1992. pp. 308- 345.

M. Brejl, M. Princ, P. Uhlir. AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500. Application Note. Freescale Semiconductor Inc. Colorado, USA. 2006. pp. 4-10.

R. Araujo, H. Teixeira, J. Barbosa, V. Leite. A Low Cost Induction Motor Controller for Electric Vehicles in Local Areas. Proceedings of the International Symposium on Industrial Electronics, (ISIE). Dubrovnik, Croatia. 2005. pp. 1499-1504. DOI: https://doi.org/10.1109/ISIE.2005.1529154

S. Bowling. An Introduction to AC Induction Motor Control Using the dsPIC30F MCU. Application Note. Microchip Technology Inc. Georgia, USA. 2005. pp. 6-10.

M. Tsuji, S. Chen, S. Hamasaki. A Novel V/f Control of Induction Motors for Wide and Precise Speed Operation. Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). Ischia, Italy. 2008. pp. 1130-1135.

C. Ogbuka, M. Agu. A Modified Approach to Induction Motor Stator Voltage and Frequency Control. Proceedings of the World Congress on Engineering, Vol. II. London, UK. 2011. pp. 44-51.

J. Guzinski, H. Abu. “Sensorless Induction Motor Drive for Electric Vehicle Application”. International Journal of Engineering, Science and Technology. Vol. 2. 2010. pp. 20-34. DOI: https://doi.org/10.4314/ijest.v2i10.64009

M. Ehsani, Y. Gao, J. Miller. “Hybrid Electric Vehicles: Architecture and Motor Drives”. Proceedings of the IEEE. Vol. 95. 2007. pp. 719-728. DOI: https://doi.org/10.1109/JPROC.2007.892492

A. Arif, A. Betka, A. Guettaf. “Improvement the DTC System for Electric Vehicles Induction Motors”. Serbian Journal of Electrical Engineering. Vol. 7. 2010. pp. 149-165.

A. Fekih. A New Sliding-Mode Based Control Design for Induction Motors Propelling Electric Vehicle Drives. Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision (ICARCV). Hanoi, Vietnam. 2008. pp. 1066- 1071. DOI: https://doi.org/10.1109/ICARCV.2008.4795667

A. Hughes. Electric Motor and Drives, Fundamentals, Types and Applications. 3rd ed. Ed. Newnes-Elsevier. Oxford, UK. 2006. pp. 167-263.

J. Cathey. Electric Machines: Analysis and Design Applying MATLAB. 1st ed. Ed. McGraw Hill. Ohio, USA. 2001. pp. 336-350.

M. Haque. “Determination of NEMA design induction motor parameters from manufacturer data”. IEEE Transactions on Energy Conversion. Vol. 23. 2008. pp. 997-1004. DOI: https://doi.org/10.1109/TEC.2008.2001451

K. Lee, S. Frank, P. Sen, L. Gentile, M. Alahmad, C. Waters. Estimation of Induction Motor Equivalent Circuit Parameters from Nameplate Data. Proceedings of the IEE North American Power Symposium. Champaign, USA. 2012. pp. 1-6. DOI: https://doi.org/10.1109/NAPS.2012.6336384

I. Birou, V. Maier, S. Pavel, C. Rusu. Indirect Vector Control of an Induction Motor with Fuzzy Logic based Speed Controller. Proceedings of the 3rd International Symposium on Electrical Engineering and Energy Converters. Suceava, Rumania. 2009. pp. 149-154.

V. Chitra, R. Prabhakar. Induction Motor Speed Control using Fuzzy Logic Controller. World Academy of Science, Engineering and Technology. Vol. 23. 2006. pp. 17-22.

S. Belkacem, F. Naceri, R. Abdessemed. “Reduction of the Torque Ripple in DTC for Induction Motor Using Input-Output Feedback Linearization”. Serbian Journal of Electrical Engineering. Vol. 8. 2001. pp. 97-110. DOI: https://doi.org/10.2298/SJEE1102097B

A. Arif, A. Betka, A. Guettaf. “Improvement the DTC System for Electric Vehicles Inductions Motors”. Serbian Journal of Electrical Engineering. Vol. 7. 2010. pp. 149-165. DOI: https://doi.org/10.2298/SJEE1002149A

A. Nazeer, A. Sadik, K. Ravi, M. Prasanti. “Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive”. International Journal of Science Engineering and Advance Technology. Vol. 2. 2014. pp. 31-36.

Downloads

Published

2015-02-18

How to Cite

Mier-Quiroga, L. A., Benítez-Read, J. S., López-Callejas, R., & Segovia-de-los-Ríos, J. A. (2015). New relation to improve the speed and torque characteristics of induction motors. Revista Facultad De Ingeniería Universidad De Antioquia, (74), 37–49. https://doi.org/10.17533/udea.redin.17572