Evaluating the IMERG precipitation satellite product to derive intensity-duration-frequency curves in Colombia
DOI:
https://doi.org/10.17533/udea.redin.20230212Keywords:
Precipitation, Remote Sensing, ColombiaAbstract
This article explores the potentialities of the IMERG V06B FINAL product for estimating Intensity-Duration-Frequency curves in Colombia, using the in-situ data available for 110 rain gauges. From observed data for 76 of these stations, we validated the satellite IMERG precipitation data for the period 2001-2019, at daily, monthly, and annual resolutions. For 60 stations, better results were obtained for the monthly time aggregation, followed by the yearly and daily scales, suggesting that seasonality is the main rainfall characteristic captured by the product. Concerning the occurrence of daily precipitation, results indicate that both the probability of detection and the probability of false detection are high. In general terms, the comparison between intensities from existing IDF curves and those derived from IMERG showed underestimations of the rainfall intensities for the short durations studied (0.5 and 1 h), with mean relative errors in the range [-69%,+56%], and overestimations for the large durations of 2 and 6 h, with mean relative errors in the range [-61%,+171%]. Results also suggest that the IMERG product at this moment is not able to capture the daily rainfall distribution in most of the stations. Nevertheless, for almost 20% of the rain gauges, located mainly in the Amazon, Orinoco, and Pacific Regions, the analysis showed that the maximum intensities derived from IMERG are within +/-25% relative error, compared with the ones calculated using the traditional approach.
Downloads
References
D. Koutsoyiannis, D. Kozonis, and A. Manetas, “A mathematical framework for studying rainfall intensity-duration-frequency relationships,” Journal of Hydrology, vol. 206, no. 1-2, apr. 1998.[Online]. Available: https://doi.org/10.1016/S0022-1694(98)00097-3
Z. Şen, “Annual daily maximum rainfall-based idf curve derivation methodology,” Earth Systems and Environment, vol. 3, Sep. 24, 2019. [Online]. Available: https://doi.org/10.1007/s41748-019-00124-x
N. Bezak, M. Šraj, and M. Mikoš, “Copula-based idf curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides,” Journal of Hydrology, vol. 541, Mar. 08, 2016. [Online].Available: https://doi.org/10.1016/j.jhydrol.2016.02.058
E. V. Aristizábal-Giraldo, E. F. García-Aristizábal, R. J. Marín-Sánchez, F. Gómez-Cardona, and J. C. Guzmán-Martínez, “Rainfall-intensity effect on landslide hazard assessment due to climate change in north-western colombian andes,” B.A. thesis, Universidad de Antioquia, Facultad de Ingeniería, Medellín, Colombia, 2022.
B. D. Avila-Rangel and H. F. Avila-Rangel, “Spatial and temporal estimation of the erosivity factor r based on daily rainfall data for the department of atlántico, colombia,” B.A. thesis, Universidad Nacional, Ingeniería e investigación, Medellín, Colombia, 2015.
K. Kirby and J. Stratton, “Hidfun una herramienta para la extracción y análisis de pluviogramas,” XXVIII Congreso latinoamericano de hidráulica, Buenos Aires, Argentina, 2018.
S. M. Papalexiou and D. Koutsoyiannis, “Battle of extreme value distributions: A global survey on extreme daily rainfall,” Water resources Research, vol. 49, no. 1, Jan. 15, 2013. [Online]. Available: https://doi.org/10.1029/2012WR012557
F. Serinaldi and C. G. Kilsby, “Rainfall extremes: Toward reconciliation after the battle of distributions,” Water resources Research, vol. 50, no. 1, Jan. 04, 2014. [Online]. Available: https://doi.org/10.1002/2013WR014211
S. Emmanouil, A. Langousis, E. I. Nikolopoulos, and E. N. Anagnostou, “Quantitative assessment of annual maxima, peaks-over-threshold and multifractal parametric approaches in estimating intensity-duration-frequency curves from short rainfall records,” Journal of Hydrology, vol. 589, May. 01, 2020. [Online].Available: https://doi.org/10.1016/j.jhydrol.2020.125151
D. Grajales-Cardona and L. F. Carvajal-Serna, “Nonstationary intesity-duration-frequency curves for medellin river basin,” DYNA, vol. 86, no. 208, Jan-Mar. 2019. [Online]. Available: DOI:https://doi.org/10.15446/dyna.v86n208.69300
A. Langousis and D. Veneziano, “Intensity-duration-frequency curves from scaling representations of rainfall,” Water resources Research, vol. 43, no. 2, Feb. 21, 2007. [Online]. Available: https://doi.org/10.1029/2006WR005245
H. V. de Vyver and G. R. Demarée, “Construction of intensity–duration–frequency (idf) curves for precipitation at lubumbashi, congo, under the hypothesis of inadequate data,” Hydrological Sciences Journal, vol. 55, no. 4, Nov. 02, 2009. [Online]. Available: https://doi.org/10.1080/02626661003747390
H. Tyralis and A. Langousis, “Estimation of intensity–duration–frequency curves using max-stable processes,” Stochastic Environmental Research and Risk Assessment, vol. 33,
Jul. 06, 2018. [Online]. Available: https://doi.org/10.1007/s00477-018-1577-2
C. Cheng-lung, “Rainfall intensity duration frequency formulas,” Journal of Hydraulic Engineering, vol. 109, no. 12, Dec. 01, 1983. [Online]. Available: https://doi.org/10.1061/(ASCE)0733-9429(1983)109:12(1603)
S. Urbanek, M. Vargas, and R. Díaz-Granados, “Curvas sintéticas regionalizadas de intensidad-duración-frecuencia para colombia.” in Seminario de Hidráulica e Hidrología, Sociedad Colombiana de Ingenieros, Cali, Colombia, 1998, pp. 119–128.
E. G. Pulgarín-Dávila, “Fórmulas regionales para la estimación de curvas intensidad - frecuencia - duración basadas en las propiedades de escala de la lluvia (región andina colombiana),” M.S. thesis, Departamento de Geociencias y Medio Ambiente, Universidad Nacional, Medellín, Colombia, 2009.
Estudio de Actualización y Análisis Comparativo de las Curvas Intensidad, Duración y Frecuencia Disponibles en el IDEAM, Convenio Interadministrativo No. 113 de 2016, IDEAM-UNAL, Bogotá, D.C, 2016.
T. Dinku, F. Ruiz, S. J. Connor, and P. Ceccato, “Validation and intercomparison of satellite rainfall estimates over colombia,” Journal of Applied Meteorology and Climatology, vol. 49, no. 5, May. 01, 2010. [Online]. Available: https://doi.org/10.1175/2009JAMC2260.1
M. Ma, H. Wang, P. Jia, G. Tang, D. Wang, and et al., “Application of the gpm-imerg products in flash flood warning: A case study in yunnan, china,” Remote Sensing, vol. 12, no. 12, Jun. 15, 2020.[Online]. Available: https://doi.org/10.3390/rs12121954
W. Guachamín, S. Páez-Bimos, and N. Horna, “Evaluation of imerg v03 and tmpa v7 products in the detection of flood events in cañar river basin,” Revista Politécnica, vol. 42, no. 2, Nov-Jan. 2019.[Online]. Available: http:https://tinyurl.com/mvm8ubst
R. Zubieta1, A. Getirana, J. C. Espinoza, W. Lavado-Casimiro, and L. Aragon, “Hydrological modeling of the peruvian–ecuadorian amazon basin using gpm-imerg satellite-based precipitation dataset,” Communications Week, vol. 21, no. 7, Jul. 14, 2017.[Online]. Available: https://doi.org/10.5194/hess-21-3543-2017
R. Junqueira, M. R. Viola, J. da S. Amorim, C. Camargos, and C. R. de Mello, “Hydrological modeling using remote sensing precipitation data in a brazilian savanna basin,” Journal of South American Earth Sciences, vol. 115, Mar. 13, 2022. [Online]. Available: https://doi.org/10.1016/j.jsames.2022.103773
F. Satgé, D. Ruelland, M. P. Bonnet, J. Molina, and R. Pillco, “Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snowhydrological modelling in the lake titicaca region,” Hydrology and Earth System Sciences, vol. 23, no. 1, Jan. 14, 2019.
[Online].Available: https://doi.org/10.5194/hess-23-595-2019
E. Rodríguez, I. Sánchez, N. Duque, P. Arboleda, C. Vega, and et al., “Combined use of local and global hydro meteorological data with hydrological models for water resources management in the magdalena - cauca macro basin – colombia,” Communications Week, vol. 34, Mar. 19, 2019. [Online]. Available:
https://doi.org/10.1007/s11269-019-02236-5
P. López-López, W. W. Immerzeel, E. A. Rodríguez-Sandoval, G. Sterk, and J. Schellekens, “Spatial downscaling of satellite-based precipitation and its impact on discharge simulations in the magdalena river basin in colombia,” Communications Week, vol. 6, Jun. 08, 2018. [Online]. Available: https://doi.org/10.3389/feart.2018.00068
E. Zorzetto and M. Marani, “Downscaling of rainfall extremes from satellite observations,” Water Resources Research, vol. 5, no. 1, Nov. 26, 2018. [Online]. Available: https://doi.org/10.1029/2018WR022950
M. Zambrano-Bigiarini, C. Soto-Escobar, and O. M. Baez-Villanueva, “Spatially-distributed idf curves for center-southern chile using imerg,” in EGU General Assembly 2020, Munich, Alemania, 2020.
M. Noor, T. Ismail, S. Shahid, M. Asaduzzaman, and A. Dewan, “Evaluating intensity-duration-frequency (idf) curves of satellite-based precipitation datasets in peninsular malaysia,” Atmospheric Research, vol. 248, no. 19, Aug. 18, 2020. [Online].Available: https://doi.org/10.1016/j.atmosres.2020.105203
K. Venkatesh, R. Maheswaran, and J. Devacharan, “Framework for developing idf curves using satellite precipitation: a case study using gpm-imerg v6 data,” Earth Science Informatics, vol. 15, Oct. 02, 2021.
[Online]. Available: https://doi.org/10.1007/s12145-021-00708-0
M. Ombadi, P. Nguyen, S. Sorooshian, and K. Hsu, “Developing intensity-duration-frequency (idf) curves from satellite-based precipitation: Methodology and evaluation,” Water Resources Research, vol. 54, no. 10, Sep. 04, 2018.
[Online]. Available:https://doi.org/10.1029/2018WR022929
G. J. Huffman, E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan. (2019) Gpm imerg final precipitation l3 half hourly 0.1 degree x 0.1 degree v06 (gpm-3imerghh). [Online]. Available: https://doi.org/10.5067/GPM/IMERG/3B-HH/06
R. K. Pradhan, Y. Markonis, M. R. Vargas-Godoy, A. Villalba-Pradas, K. M. Andreadis, and et al., “Review of gpm imerg performance: A global perspective,” Remote Sensing of Environment, vol. 268, Oct. 12, 2021. [Online]. Available: https://doi.org/10.1016/j.rse.2021.112754
A. Almagro, P. T. Sanches-Oliveira, and L. Brocca, “Assessment of bottom-up satellite rainfall products on estimating river discharge and hydrologic signatures in brazilian catchments,” Journal of Hydrology, vol. 603, Agu. 28, 2021. [Online]. Available: https://doi.org/10.1016/j.jhydrol.2021.126897
J. R. Rozante, D. A. Vila, J. Barboza-Chiquetto, A. D. A. Fernandes, and D. Souza-Alvim, “Evaluation of trmm/gpm blended daily products over brazil,” Remote Sensing, vol. 10, no. 6, Apr. 11, 2018. [Online]. Available: https://doi.org/10.3390/rs10060882
E. da S. Freitas, V. H. R. Coelho, Y. Xuan, D. de C. D. Melo, A. N. Gadelha, and et al., “The performance of the imerg satellite-based product in identifying sub-daily rainfall events and their properties,” Journal of Hydrology, vol. 589, May. 28, 2020. [Online]. Available:https://doi.org/10.1016/j.jhydrol.2020.125128
Y. Rojas, J. R. Minder, L. S. Campbell, A. Massmann, and R. Garreaud, “Assessment of gpm imerg satellite precipitation estimation and its dependence on microphysical rain regimes over the mountains of south-central chile,” Atmospheric Research, vol. 253, no. 19, Jan. 04, 2021. [Online]. Available: https://doi.org/10.1016/j.atmosres.2021.105454
S. Palomino-Ángel, J. A. Anaya-Acevedo, and B. A. Botero, “Evaluation of 3b42v7 and imerg daily-precipitation products for a very high-precipitation region in northwestern south america,” Communications Week, vol. 217, Oct. 23, 2018. [Online]. Available: https://doi.org/10.1016/j.atmosres.2018.10.012
D. Delgado, M. Sadaoui, W. Ludwig, and W. Méndez, “Spatio-temporal assessment of rainfall erosivity in Ecuador based on rusle using satellite-based high frequency gpm-imerg precipitation data,” Communications Week, vol. 219, Aug. 21, 2022. [Online]. Available: https://doi.org/10.1016/j.catena.2022.106597
B. Manz, S. Páez-Bimos, N. Horna, W. Buytaert, B. Ochoa-Tocachi, and et al., “Comparative ground validation of imerg and tmpa at variable spatiotemporal scales in the tropical andes,” Journal of Hydrometeorology, vol. 18, no. 9, Sep. 01, 2017. [Online]. Available:https://doi.org/10.1175/JHM-D-16-0277.1
A. Kyaw-Kyaw, S. Shahid, and X. Wang, “Remote sensing for development of rainfall intensity–duration–frequency curves at ungauged locations of yangon, myanmar,” Water, vol. 14, no. 11, May. 23, 2022. [Online]. Available: https://doi.org/10.3390/w14111699
S. OH, U. Foelsche, G. Kirchengast, J. Fuchsberger, J. Tan, and et al., “Evaluation of gpm imerg early, late, and final rainfall estimates using wegenernet gauge data in southeastern austria,” Hydrology and Earth System Sciences, vol. 21, no. 12, Nov. 13, 2017. [Online].Available: https://doi.org/10.5194/hess-21-6559-2017
F. F. Maghsood, H. Hashemi, S. Hasan-Hosseini, and R. Berndtsson, “Ground validation of gpm imerg precipitation products over iran,” Remote Sensing, vol. 12, no. 1, Dec. 18, 2019. [Online]. Available: https://doi.org/10.3390/rs12010048
I. W. Andi-Yuda1, R. Prasetia1, A. R. As-syakur, T. Osawa, and Masahiko-Naga, “An assessment of imerg rainfall products over bali at multiple time scale,” Environmental Sciences, vol. 153, no. 12, Feb. 17, 2020. [Online]. Available: https://doi.org/10.1051/e3sconf/202015302001
A. Navarro, E. García-Ortega, A. Merino, J. L. Sánchez, and F. J. Tapiador, “Orographic biases in imerg precipitation estimates in the ebro river basin (spain): The effects of rain gauge density and altitude,” Atmospheric Research, vol. 244, no. 19, May. 22, 2020. Online]. Available: https://doi.org/10.1016/j.atmosres.2020.105068
S. Moazami and M. R. Najafi, “A comprehensive evaluation of gpm-imerg v06 and mrms with hourly ground-based precipitation observations across canada,” Journal of Hydrology, vol. 594, Dec. 20, 2020. [Online]. Available: https://doi.org/10.1016/j.jhydrol.2020.125929
M. Arshad, X. Ma, J. Yin, W. Ullah, G. Ali, and et al., “Evaluation of gpm-imerg and trmm-3b42 precipitation products over pakistan,” Atmospheric Research, vol. 249, Oct. 24, 2020. [Online]. Available: https://doi.org/10.1016/j.atmosres.2020.105341
S. M. Vallejo-Bernal, V. Urrea, J. M. Bedoya-Soto, A. O. D. Posada, and et al., “Ground validation of trmm 3b43 v7 precipitation estimates over colombia. part i: Monthly and seasonal timescales,” International Jornal of Climatology, vol. 41, no. 1, May. 14, 2020. [Online]. Available: https://doi.org/10.1002/joc.6640
S. Blenkinsop, H. J. Fowler, R. Barbero, S. C. Chan, S. B. Guerreiro, E. Kendon, G. Lenderink, and et al., “The intense project: using observations and models to understand the past, present and future of sub-daily rainfall extremes,” Advances in Science and Research, vol. 15, Jun. 05, 2018. [Online]. Available:
https://doi.org/10.5194/asr-15-117-2018
O. D. Álvarez Villa, J. I. Vélez, and G. Poveda, “Improved long-termmean annual rainfall fields for colombia,” International Journal of Climatology, vol. 31, no. 14, Oct. 07, 2010. [Online]. Available: https://doi.org/10.1002/joc.2232
G. Poveda, “La hidroclimatología de colombia: una síntesis desde la escala inter-decadal hasta la escala diurna,” Revista de la Academia Colombiana de Ciencias Exactas, Fìsicas y Naturales, vol. 28, no. 107, Jun. 2004. [Online]. Available: https://tinyurl.com/4wsv9fec
O. Mesa, L. F. Carvajal, and G. Poveda, Introducción al clima de Colombia. Medellín, Colombia: Universidad Nacional de Colombia, Facultad de Minas, 1997.
J. Pabón, J. Eslava, and R. Gómez, “Características de gran escala del clima de la américa tropical, 4, 47-53,” Meteorol, vol. 4, pp. 47–53, 2001.
DHIME. (2021) Consulta y descarga de datos hidrometeorológicos. IDEAM. [Online]. Available: https://dhime.ideam.gov.co/webgis/home/
G. N. repository. (2021) Imerg v06b final time series of rainfall intensity at 0.5 hintervals in (mm/hr) and at a resolution of 0.10°. NASA Official. [Online]. Available: https://giovanni.gsfc.nasa.gov/giovanni/
Z. Li, D. Yang, B. Gao, Y. Jiao, Y. Hong, and et al., “Multiscale hydrologic applications of the latest satellite precipitation products in the yangtze river basin using a distributed hydrologic model,” Journal of Hydrometeorology, vol. 16, no. 1, Feb. 01, 2015. [Online].Available: https://doi.org/10.1175/JHM-D-14-0105.1
B. Peng, J. Shi, W. Ni-Meister, T. Zhao, and D. Ji, “Evaluation of trmm multisatellite precipitation analysis (tmpa) products and their potential hydrological application at an arid and semiarid asin in china,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote, vol. 7, no. 9, Sep. 2014. [Online]. Available:
https://doi.org/10.1109/JSTARS.2014.2320756
X. Guan, J. Zhang, Q. Yang, X. Tang, C. Liu, and et al., “Evaluation of precipitation products by using multiple hydrological models over the upper yellow river basin, china,” Remote Sensing, vol. 12, no. 24, Dec. 06, 2020. [Online]. Available: https://doi.org/10.3390/rs12244023
Z. Wang, J. Chen, C. Lai, R. Zhong, X. Chen, and et al., “Hydrologic assessment of the tmpa 3b42-v7 product in a typical alpine and gorge region: the lancang river basin, china,” Hydrology Research, vol. 49, no. 6, Dec. 01, 2018. [Online]. Available: https://doi.org/10.2166/nh.2018.024
B. Zhu, Y. Huang, Z. Zhang, R. Kong, J. Tian, and et al., “Evaluation of tmpa satellite precipitation in driving vic hydrological model over the upper yangtze river basin,” Water, vol. 12, no. 11, Nov. 16, 2020.[Online]. Available: https://doi.org/10.3390/w12113230
R. J. Donaldson, R. M. Dyer, and M. J. Kraus, “An objective evaluator of techniques for predicting severe weather events,” in Preprints Ninth Conference on Severe Local Storms, Norman, Amer, 1975.
C. A. D. III, R. Davis-Jones, and D. L. Keller, “On summary measures of skill in rare event forecasting based on contingency tables,” Weather and Forecasting, vol. 5, no. 4, 1990. [Online]. Available:
https://doi.org/10.1175/1520-0434(1990)005<0576:OSMOSI>2.0.CO;2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.