Faulted zone determination using statistical modeling of voltage sag database in power distribution systems

Authors

  • Gabriel Ordóñez-Plata Universidad Industrial de Santander
  • Jorge Cormane-Angarita Universidad Industrial de Santander
  • Juan Mora-Flórez Universidad Tecnológica de Pereira

Keywords:

Calidad de potencia, localización de fallas, mezclas finitas, modelos estadísticos, modelos de mezclas de densidad

Abstract


An alternative solution to the problem of power service continuity associated to fault location is presented in this paper, by using a methodology of statistical nature based on finite mixtures. A statistical model which helps to locate the faulted zone, is obtained from the extraction of the magnitude of the voltage sag registered during a fault event, along with the network parameters and topology. The objective is to offer an economic alternative of easy implementation for the development of strategies oriented to improve the reliability from the reduction of the restoration times in power distribution systems. As results presented for an application example in a 25kV system, the faulted zones were identified, having low error rates.

|Abstract
= 11 veces | PDF (ESPAÑOL (ESPAÑA))
= 11 veces|

Downloads

Download data is not yet available.

Author Biographies

Gabriel Ordóñez-Plata, Universidad Industrial de Santander

Grupo de Investigación en Sistema Eléctricos (GISEL). Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones

Jorge Cormane-Angarita, Universidad Industrial de Santander

Grupo de Investigación en Sistema Eléctricos (GISEL). Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones

Juan Mora-Flórez, Universidad Tecnológica de Pereira

Grupo de Investigación en Calidad de Energía Eléctrica y Estabilidad (ICE). Programa de Ingeniería Eléctrica

References

J. Mora, G. Carrillo, B. Barrera. “Fault Location in Power distribution Systems using a Learning Algorithm for Multivariable Data Analysis”. IEEE Trans. on Power Delivery. Vol. 22. 2007. pp. 1715- 1721.

J. Driesen, T. Green, T. Van Craenenbroeck, R. Belmans. “The Development of Power Quality Markets”. IEEE Power Engineering Society General Meeting. Vol. 1. 2004. pp. 963-967.

J. Martinez, J. Martin. “Voltage Sag Stochastic Prediction Using an Electromagnetic Transients Program”. IEEE Transactions on power delivery. Vol. 19. 2004. pp. 596- 602.

C. Crozier, W. Wisdom. “A power quality and reliability index based on customer interruption costs”. Power Engineering Review, IEEE. Vol. 19. 1999. pp. 59 – 61.

M. Bollen. Understanding power quality problems: voltages sags and interruptions. Ed. IEEE Press. New York,. 2000. pp. 35 – 116.

A. Girgis, C. Fallon, D. Lubkeman. “A fault location technique for rural distribution feeders”. IEEE Trans. Industry applications. Vol. 29. 1993. pp. 1170-1175.

R. Brown. Electric power distribution reliability. New York. Marcel Dekker. 2002. pp. 24-42.

R. Das. “Determining the Locations of Faults in Distribution Systems”. Ph.D dissertation. Saskatchewan Univ. Canada. 1998. pp. 15 – 48.

J. Zhu, D. Lubkeman, A. Girgis. “Automated fault location and diagnosis on electric power distribution feeders”. IEEE Trans. Power delivery. Vol. 12. 1997. pp. 801-809.

A. Girgis, C. Fallon, D. Lubkeman. “A fault location technique for rural distribution feeders”. IEEE Trans. Industry applications. Vol. 29. 1993. pp. 1170-1175.

H. Willis. Power distribution planning reference book. New York. Marcel Dekker. 2004. pp. 47 – 59.

L. D. Zhang, M. H. J. Bollen. “Characteristics of voltage dips (sags) in power systems”. IEEE Transactions on Power Delivery. Vol. 15. 2000. pp.827-832.

A. Rencher. “Methods of Multivariable Analysis”. Ed. John Wiley and Sons. New York. Brigham Young University. Utath. 1995. Chapter 12. pp. 415-443.

Y. Wang, L. Luo, M. Freedman, S. Kung. “Probabilistic principal component subspaces: A hierarchical finite mixture model for data visualization”. IEEE Trans. Neural Networks. Vol. 11. 2000. pp. 625-636.

R. Johnson, D. Wichern. Applied Multivariate Statistical Analysis. Ed. Prentice Hall, New York. 1998. pp. 124-168.

J. Hair, R. Anderson, R. Tatham, W. Black. Multivariable Data Analysis. Ed. Prentice Hall. Madrid.1999. pp. 85-97.

Y. Wang, S. Lin, H. Li, S. Kung. “Data mapping by probabilistic modular networks and information theoretic criteria”. IEEE Trans. Signal processing. Vol. 46. 1998. pp. 3378-3397.

M. Jordan, R. Jacobs. “Hierarchical mixture of experts and the EM algorithm”. IEEE Trans. Neural Computing. Vol. 6. 1994. pp. 181-214.

W. Martínez, A. Martínez. Computational statistics Handbook whit MatLab. Ed. Chapman & Hall New

York. 2002. pp. 90-124.

E. Dalla Jonson. Métodos multivariados aplicados a análisis de datos. Ed. Thompson. México. 2000. pp. 53-86.

G. Mclachlan, D. Peel. Finite mixture models. Ed. Wiley and Sons. Montreal. 2000. pp. 46-72.

M. Figueiredo. “Unsupervised Learning of Finite Mixture Models”. IEEE Trans. Pattern analysis and Machine intelligence. Vol. 24. 2002. pp. 135-143.

J. B. Dagenhart. “The 40-Ground-Fault Phenomenon”. IEEE Trans. on Industry Applications. Vol. 36. 2000. pp. 30-32.

S. Lee, M. Choi, S. Kang, B. Jin, D. Lee, B. Ahn, N. Yoon, H. Kim, S. Wee. “An intelligent and efficient fault location and diagnosis scheme for radial distribution systems”. IEEE Trans. Power Delivery. Vol. 19. 2004. pp. 524-532.

Published

2013-12-04

How to Cite

Ordóñez-Plata, G. ., Cormane-Angarita, J., & Mora-Flórez, J. (2013). Faulted zone determination using statistical modeling of voltage sag database in power distribution systems. Revista Facultad De Ingeniería Universidad De Antioquia, (47), 197–208. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/17783
w

Most read articles by the same author(s)