Faulted zone determination using statistical modeling of voltage sag database in power distribution systems
DOI:
https://doi.org/10.17533/udea.redin.17783Keywords:
Calidad de potencia, localización de fallas, mezclas finitas, modelos estadísticos, modelos de mezclas de densidadAbstract
An alternative solution to the problem of power service continuity associated to fault location is presented in this paper, by using a methodology of statistical nature based on finite mixtures. A statistical model which helps to locate the faulted zone, is obtained from the extraction of the magnitude of the voltage sag registered during a fault event, along with the network parameters and topology. The objective is to offer an economic alternative of easy implementation for the development of strategies oriented to improve the reliability from the reduction of the restoration times in power distribution systems. As results presented for an application example in a 25kV system, the faulted zones were identified, having low error rates.
Downloads
References
J. Mora, G. Carrillo, B. Barrera. “Fault Location in Power distribution Systems using a Learning Algorithm for Multivariable Data Analysis”. IEEE Trans. on Power Delivery. Vol. 22. 2007. pp. 1715- 1721. DOI: https://doi.org/10.1109/TPWRD.2006.883021
J. Driesen, T. Green, T. Van Craenenbroeck, R. Belmans. “The Development of Power Quality Markets”. IEEE Power Engineering Society General Meeting. Vol. 1. 2004. pp. 963-967.
J. Martinez, J. Martin. “Voltage Sag Stochastic Prediction Using an Electromagnetic Transients Program”. IEEE Transactions on power delivery. Vol. 19. 2004. pp. 596- 602. DOI: https://doi.org/10.1109/TPWRD.2004.829125
C. Crozier, W. Wisdom. “A power quality and reliability index based on customer interruption costs”. Power Engineering Review, IEEE. Vol. 19. 1999. pp. 59 – 61. DOI: https://doi.org/10.1109/39.755017
M. Bollen. Understanding power quality problems: voltages sags and interruptions. Ed. IEEE Press. New York,. 2000. pp. 35 – 116.
A. Girgis, C. Fallon, D. Lubkeman. “A fault location technique for rural distribution feeders”. IEEE Trans. Industry applications. Vol. 29. 1993. pp. 1170-1175.
R. Brown. Electric power distribution reliability. New York. Marcel Dekker. 2002. pp. 24-42. DOI: https://doi.org/10.1201/9780824744281
R. Das. “Determining the Locations of Faults in Distribution Systems”. Ph.D dissertation. Saskatchewan Univ. Canada. 1998. pp. 15 – 48.
J. Zhu, D. Lubkeman, A. Girgis. “Automated fault location and diagnosis on electric power distribution feeders”. IEEE Trans. Power delivery. Vol. 12. 1997. pp. 801-809. DOI: https://doi.org/10.1109/61.584379
A. Girgis, C. Fallon, D. Lubkeman. “A fault location technique for rural distribution feeders”. IEEE Trans. Industry applications. Vol. 29. 1993. pp. 1170-1175. DOI: https://doi.org/10.1109/28.259729
H. Willis. Power distribution planning reference book. New York. Marcel Dekker. 2004. pp. 47 – 59. DOI: https://doi.org/10.1201/9781420030310
L. D. Zhang, M. H. J. Bollen. “Characteristics of voltage dips (sags) in power systems”. IEEE Transactions on Power Delivery. Vol. 15. 2000. pp.827-832. DOI: https://doi.org/10.1109/61.853026
A. Rencher. “Methods of Multivariable Analysis”. Ed. John Wiley and Sons. New York. Brigham Young University. Utath. 1995. Chapter 12. pp. 415-443.
Y. Wang, L. Luo, M. Freedman, S. Kung. “Probabilistic principal component subspaces: A hierarchical finite mixture model for data visualization”. IEEE Trans. Neural Networks. Vol. 11. 2000. pp. 625-636. DOI: https://doi.org/10.1109/72.846734
R. Johnson, D. Wichern. Applied Multivariate Statistical Analysis. Ed. Prentice Hall, New York. 1998. pp. 124-168.
J. Hair, R. Anderson, R. Tatham, W. Black. Multivariable Data Analysis. Ed. Prentice Hall. Madrid.1999. pp. 85-97.
Y. Wang, S. Lin, H. Li, S. Kung. “Data mapping by probabilistic modular networks and information theoretic criteria”. IEEE Trans. Signal processing. Vol. 46. 1998. pp. 3378-3397. DOI: https://doi.org/10.1109/78.735311
M. Jordan, R. Jacobs. “Hierarchical mixture of experts and the EM algorithm”. IEEE Trans. Neural Computing. Vol. 6. 1994. pp. 181-214. DOI: https://doi.org/10.1162/neco.1994.6.2.181
W. Martínez, A. Martínez. Computational statistics Handbook whit MatLab. Ed. Chapman & Hall New
York. 2002. pp. 90-124. DOI: https://doi.org/10.1115/1.1456451
E. Dalla Jonson. Métodos multivariados aplicados a análisis de datos. Ed. Thompson. México. 2000. pp. 53-86.
G. Mclachlan, D. Peel. Finite mixture models. Ed. Wiley and Sons. Montreal. 2000. pp. 46-72. DOI: https://doi.org/10.1002/0471721182
M. Figueiredo. “Unsupervised Learning of Finite Mixture Models”. IEEE Trans. Pattern analysis and Machine intelligence. Vol. 24. 2002. pp. 135-143. DOI: https://doi.org/10.1109/34.990138
J. B. Dagenhart. “The 40-Ground-Fault Phenomenon”. IEEE Trans. on Industry Applications. Vol. 36. 2000. pp. 30-32. DOI: https://doi.org/10.1109/28.821792
S. Lee, M. Choi, S. Kang, B. Jin, D. Lee, B. Ahn, N. Yoon, H. Kim, S. Wee. “An intelligent and efficient fault location and diagnosis scheme for radial distribution systems”. IEEE Trans. Power Delivery. Vol. 19. 2004. pp. 524-532. DOI: https://doi.org/10.1109/TPWRD.2003.820431
Downloads
Published
How to Cite
Issue
Section
License
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.