Forecasting time series. Short-term electrical power using fuzzy logic


  • Héctor Tabares Universidad de Antioquia
  • Jesús Hernández Universidad Nacional de Colombia


Fuzzy logic, daily electrical power curves


In recent developments of fuzzy logic, the paradigm of universal proximity is very common. The fuzzy systems are estimates of a continuous function in a X group. The objective of this work is to find out a F(x) function with Fuzzy Logic (FL) that will allow to map out daily electrical power curves in a residential sector, in the city of Medellín. The variable input vector is the total electricity required for a 24 hour period (t).

= 9 veces | PDF (ESPAÑOL (ESPAÑA))
= 8 veces|


Download data is not yet available.

Author Biography

Héctor Tabares, Universidad de Antioquia

Departamento de Ingeniería Eléctrica, Facultad de Ingeniería


A. Sala. “Fuzzy Systems evaluation: The inference error approach”. IEEE Trans. On Syst. Man & Cybernetics. 1998. Vol. 28B. pp. 268-275.

EUSFLAT: European society for Fuzzy Logic and Technology. Disponible en: http// Consultada el 4 de Marzo de 2007.

H. Verbrugggen, R. Babuska (editors). Fuzzy logic Control: Advances in Applications. Ed. World Scientific. Singapure. 1999. pp. 340.

L. Holmbald, J. Ostergaard. “Control of a cement kiln by fuzzy logic”. Fuzzy Information and Decision Processes. M.M. Grupta, E. Samchez (editors). Ed. North-Holland. Ámsterdam. 1998. pp. 398-409.

R. Tong. “Fuzzy control of the activated sludge wastewater treatment process”. Automática. 1980. Vol. 16. pp. 695-701.

F. Rubio. “Fuzzy Logic Control of a solar power plant”. IEEE Trans.Fuzzy Systems. 1995. Vol. 3. pp. 459-468.

J. Hilera. Redes Neuronales Artificiales. Fundamentos, modelos y aplicaciones. Ed. Alfa Omega. Madrid. 2000. pp. 132-153.

M. del Brio, A. Sans. Redes Neuronales y Sistemas Difusos. Ed. Alfa Omega. Madrid. 2002. pp. 241-349.

D. Dubois, H. Prade. Fuzzy Sets and systems: Theory and Applications. Ed. Academic Press. New York. 1980. pp. 121-133.

L. Zadeh. “Fuzzy logic”. IEEE Computer. 1998. pp. 1-83.

E. Cox. “Fuzzy Fundamentals” IEEE Spectrum. Vol. 29. 1992. pp. 58-61.

E. Trillas. Fundamentos e Introducción a la ingeniería fuzzy. Ed. Morón Electronics S.A. Madrid. 1992. pp. 22-89.

E. Trillas, J. Gutiérrez. Aplicaciones de la lógica borrosa. Ed. CSIC Nuevas tendencias. Madrid. 1994. pp 37-78.

T. Takagi, M. Sugeno. “Fuzzy identification of systems and its applications to modelling and control”. IEEE Trans. On Systems. Man and cybernetics. 1985. Vol. 15. pp. 116-132.

C. Zho, Q. Meng. “Dynamic balance of a biped robot using fuzzy reinforcement learning agents”. Fuzzy Sets and Systems. 2003. Vol. 134. pp. 169-187.

S. Grainger. Análisis de sistemas de potencia. Ed. McGraw-Hill. 2002. pp. 56-124.

J. Jantzen. “Tunning of Fuzzy PID Controllers”. Tech. Report. Vol. 1.1998. pp. 48-224.

L. Zadeh. Fuzzy Logic Toolbox, User’s Guide. Version 2. Ed. The Math Works, Inc. 1998.pp. 12-55.

Facultad de Ingeniería, Universidad de Antioquia. Disponible en Consultada el 4 de Marzo de 2007.



How to Cite

Tabares, H., & Hernández, J. (2013). Forecasting time series. Short-term electrical power using fuzzy logic. Revista Facultad De Ingeniería Universidad De Antioquia, (47), 209–217. Retrieved from