Forecasting time series. Short-term electrical power using fuzzy logic

Authors

  • Héctor Tabares Universidad de Antioquia
  • Jesús Hernández Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.redin.17784

Keywords:

Fuzzy logic, daily electrical power curves

Abstract

In recent developments of fuzzy logic, the paradigm of universal proximity is very common. The fuzzy systems are estimates of a continuous function in a X group. The objective of this work is to find out a F(x) function with Fuzzy Logic (FL) that will allow to map out daily electrical power curves in a residential sector, in the city of Medellín. The variable input vector is the total electricity required for a 24 hour period (t).

|Abstract
= 123 veces | PDF (ESPAÑOL (ESPAÑA))
= 40 veces|

Downloads

Download data is not yet available.

Author Biography

Héctor Tabares, Universidad de Antioquia

Departamento de Ingeniería Eléctrica, Facultad de Ingeniería

References

A. Sala. “Fuzzy Systems evaluation: The inference error approach”. IEEE Trans. On Syst. Man & Cybernetics. 1998. Vol. 28B. pp. 268-275. DOI: https://doi.org/10.1109/3477.662768

EUSFLAT: European society for Fuzzy Logic and Technology. Disponible en: http//www.eusflat.org/. Consultada el 4 de Marzo de 2007.

H. Verbrugggen, R. Babuska (editors). Fuzzy logic Control: Advances in Applications. Ed. World Scientific. Singapure. 1999. pp. 340.

L. Holmbald, J. Ostergaard. “Control of a cement kiln by fuzzy logic”. Fuzzy Information and Decision Processes. M.M. Grupta, E. Samchez (editors). Ed. North-Holland. Ámsterdam. 1998. pp. 398-409.

R. Tong. “Fuzzy control of the activated sludge wastewater treatment process”. Automática. 1980. Vol. 16. pp. 695-701. DOI: https://doi.org/10.1016/0005-1098(80)90011-4

F. Rubio. “Fuzzy Logic Control of a solar power plant”. IEEE Trans.Fuzzy Systems. 1995. Vol. 3. pp. 459-468. DOI: https://doi.org/10.1109/91.481955

J. Hilera. Redes Neuronales Artificiales. Fundamentos, modelos y aplicaciones. Ed. Alfa Omega. Madrid. 2000. pp. 132-153.

M. del Brio, A. Sans. Redes Neuronales y Sistemas Difusos. Ed. Alfa Omega. Madrid. 2002. pp. 241-349.

D. Dubois, H. Prade. Fuzzy Sets and systems: Theory and Applications. Ed. Academic Press. New York. 1980. pp. 121-133.

L. Zadeh. “Fuzzy logic”. IEEE Computer. 1998. pp. 1-83.

E. Cox. “Fuzzy Fundamentals” IEEE Spectrum. Vol. 29. 1992. pp. 58-61. DOI: https://doi.org/10.1109/6.158640

E. Trillas. Fundamentos e Introducción a la ingeniería fuzzy. Ed. Morón Electronics S.A. Madrid. 1992. pp. 22-89.

E. Trillas, J. Gutiérrez. Aplicaciones de la lógica borrosa. Ed. CSIC Nuevas tendencias. Madrid. 1994. pp 37-78.

T. Takagi, M. Sugeno. “Fuzzy identification of systems and its applications to modelling and control”. IEEE Trans. On Systems. Man and cybernetics. 1985. Vol. 15. pp. 116-132. DOI: https://doi.org/10.1109/TSMC.1985.6313399

C. Zho, Q. Meng. “Dynamic balance of a biped robot using fuzzy reinforcement learning agents”. Fuzzy Sets and Systems. 2003. Vol. 134. pp. 169-187. DOI: https://doi.org/10.1016/S0165-0114(02)00236-1

S. Grainger. Análisis de sistemas de potencia. Ed. McGraw-Hill. 2002. pp. 56-124.

J. Jantzen. “Tunning of Fuzzy PID Controllers”. Tech. Report. Vol. 1.1998. pp. 48-224.

L. Zadeh. Fuzzy Logic Toolbox, User’s Guide. Version 2. Ed. The Math Works, Inc. 1998.pp. 12-55.

Facultad de Ingeniería, Universidad de Antioquia. Disponible en http://jaibana.udea.edu.co/producciones/programas.html. Consultada el 4 de Marzo de 2007.

Published

2013-12-04

How to Cite

Tabares, H., & Hernández, J. (2013). Forecasting time series. Short-term electrical power using fuzzy logic. Revista Facultad De Ingeniería Universidad De Antioquia, (47), 209–217. https://doi.org/10.17533/udea.redin.17784