Supresión de Vibración Armónica de Frecuencia Variable Usando Absorción Activa de Vibraciones
DOI:
https://doi.org/10.17533/udea.redin.18126Palabras clave:
absorbedores dinámicos de vibraciones, absorción activa de vibraciones, estimación de fuerza, vibraciones mecánicasResumen
Los absorbedores dinámicos pasivos de vibraciones se han utilizado ampliamente para atenuación de vibraciones dañinas en muchos sistemas de ingeniería prácticos. La aplicabilidad de estos dispositivos de absorción pasiva de vibraciones se limita a un ancho de banda angosto y especifico de frecuencias de operación. En este artículo se propone un nuevo esquema de absorción activa de vibraciones que permite extender la capacidad de supresión de vibraciones de un absorbedor masa-resorte-amortiguador pasivo para cualquier frecuencia de excitación, incluyendo fuerzas de perturbación armónica resonantes de interés. Los fundamentos centrales de un absorbedor pasivo se explotan en la etapa de diseño del esquema de absorción propuesto. Así, el dispositivo de absorción activa aplica fuerzas sobre el sistema mecánico primario que contrarrestan las fuerzas de perturbación desconocidas, conservando la propiedad de atenuación de vibraciones del absorbedor pasivo. La fuerza de perturbación se estima en línea usando un observador de estado extendido propuesto en este trabajo. Se incluyen resultados en simulación para mostrar la eficiencia del esquema de absorción activa de vibraciones para rechazar vibraciones forzadas resonantes y caóticas completamente desconocidas afectando el sistema mecánico primario, y para probar la efectividad de la estimación de fuerzas de perturbación exógenas.
Descargas
Citas
S. Rao. Mechanical Vibrations. 5th ed. Ed. Prentice Hall. Upper Saddle River. New Jersey, USA. 2011. pp. 10-13.
B. Korenev, L. Reznikov. Dynamic Vibration Absorbers. 1st ed. Ed. John Wiley & Sons Ltd. Chichester. England. 1993. pp. 1-296.
S. Braun, D. Ewins, S. Rao. Encyclopedia of Vibration. 1st ed. Ed. Academic Press. London, UK. 2002. pp. 1-26.
A. Piersol, T. Paez. Harris’s Shock and Vibration Handbook. 6th ed. Ed. McGraw-Hill. Columbus, USA. 2010. pp. 6.1-6.33.
C. Kai, A. Huang. “Active Vibration Absorbers Design for Mechanical Systems with Frequency-Varying Excitations”. Journal of Vibration and Control. DOI: 10.1177/1077546313478293. 2013. pp. 1-14. DOI: https://doi.org/10.1177/1077546313478293
S. Chatterjee. “Optimal Active Absorber with Internal State Feedback for Controlling Resonant and Transient Vibration”. Journal of Vibration and Control. Vol. 329. 2010. pp. 5397-5414. DOI: https://doi.org/10.1016/j.jsv.2010.07.017
M. Tso, J. Yuang, W. Wong. “Suppression of Random Vibration in Flexible Structures Using a Hybrid Vibration Absorber”. Journal of Vibration and Control. Vol. 331. 2012. pp. 974-986. DOI: https://doi.org/10.1016/j.jsv.2011.10.017
P. Bhatta, A. Sinha. “A Discrete-time, Optimal, Active Vibration Absorber”. Journal of Sound and Vibration. Vol. 268. 2003. pp. 201-208. DOI: https://doi.org/10.1016/S0022-460X(03)00250-5
P. Bonello. “Adaptive Tuned Vibration Absorbers: Design Principles, Concepts and Physical Implementations”. F. Beltrán (editor). Vibration Analysis and Control-New Trends and Developments. 1st ed. Ed. InTech. Rijeka, Croatia. 2011. pp. 1-26. DOI: https://doi.org/10.5772/23558
F. Beltrán, G. Silva, B. Vázquez, E. Chávez. “Design of Active Vibration Absorbers Using On-Line Estimation of Parameters and Signals”. F. Beltrán (editor). Vibration Analysis and Control-New Trends and Developments. 1st ed. Ed. InTech. Rijeka, Croatia. 2011. pp. 27-46.
F. Beltrán, G. Silva. “Adaptive-Like Vibration Control in Mechanical Systems with Unknown Parameters and Signals”. Asian J. Control. Vol. 15. No. 16. 2013. pp. 1613-1526. DOI: https://doi.org/10.1002/asjc.727
F. Beltrán, G. Silva, M. Arias. “Active Unbalance Control of Rotor Systems Using On-Line Algebraic Identification Methods”. Asian J. Control. Vol. 15. No. 16. 2013. pp. 1627-1637. DOI: https://doi.org/10.1002/asjc.744
T. Bandivadekar, R. Jangid. “Optimization of Multiple Tuned Mass Dampers for Vibration Control of System Under External Excitation”. Journal of Vibration and Control. Vol. 19. 2012. pp. 1854-1871. DOI: https://doi.org/10.1177/1077546312449849
R. Chen, T. Wu. “Vibration Control of Base System Using Distributed Dynamic Vibration Absorbers.” Journal of Vibration and Control. DOI: 10.1177/1077546312472923. 2014. pp. 1-12. DOI: https://doi.org/10.1177/1077546312472923
R. Harik, J. Issa. “Design of a vibration absorber for harmonically forced damped systems.” Journal of Vibration and Control. DOI: 10.1177/1077546313501928. 2013. pp. 1-11. DOI: https://doi.org/10.1177/1077546313501928
S. Saravanamurugan, T. Alwarsamy, K. Devarajan. “Optimization of Damped Dynamic Vibration Absorber to Control Chatter in Metal Cutting Process”. Journal of Vibration and Control. DOI: 10.1177/1077546313492554. 2013. pp. 1-10. DOI: https://doi.org/10.1177/1077546313492554
M. Arias, F. Beltrán, G. Silva. “On-line Algebraic Identification of Eccentricity Parameters in Active Rotor-Bearing Systems”. International Journal of Mechanical Sciences. Vol. 85. 2014. pp. 152-159. DOI: https://doi.org/10.1016/j.ijmecsci.2014.05.027
X. Zhang, X. Liu, Q. Zhu. “Adaptive Chatter Free Sliding Mode Control for a Class of Uncertain Chaotic Systems”. Applied Mathematics and Computation. Vol. 232. 2014. pp. 431-435. DOI: https://doi.org/10.1016/j.amc.2014.01.094
A. Senouci, A. Boukabou. “Predictive Control and Synchronization of Chaotic and Hyperchaotic Systems Based on a T–S Fuzzy Model”. Mathematics and Computers in Simulation. Vol. 105. 2014. pp. 62-78. DOI: https://doi.org/10.1016/j.matcom.2014.05.007
G. Chen. Controlling Chaos and Bifurcations in Engineering Systems. 1st ed. Ed. CRC Press. Florida, USA. 1999. pp. 1-71.
H. Khalil. Nonlinear Systems. 3rd ed. Ed. Prentice Hall. New Jersey, USA. 2002. pp. 126-130.
H. Sira, V. Feliu, F. Beltrán, A. Blanco. SigmaDelta Modulation Sliding Mode Observers for Linear Systems Subject to Locally Unstable Inputs. Proceedings of the 16th Mediterranean Conference on Control and Automation. Ajaccio, France. 2008. pp. 344-349.
H. Sira, F. Beltrán, A. Blanco. “A Generalized Proportional Integral Output Feedback Controller for the Robust Perturbation Rejection in a Mechanical System”. Sciences et Technologies de l’Automatique. Vol. 5. 2008. pp. 24-32.
M. Fliess, C. Join, H. Sira. “Non-linear Estimation is Easy”. Int. J. of Modelling, Identification and Control. Vol. 4. 2008. pp. 12-27. DOI: https://doi.org/10.1504/IJMIC.2008.020996
Z. Gao. Active Disturbance Rejection Control: A Paradigm Shift in Feedback Control System Design. Proceedings of the 2006 American Control Conference. Minneapolis, USA. 2006. pp. 2399-2405.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista Facultad de Ingeniería
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.