Variations of seasonal and spatial Hg, Pb, Cr and organic matter contents in Ayapel Flood Plain Lake sediments, Córdoba, northwest Colombia

Authors

  • Alex Fernando Rúa Cardona University of Antioquia
  • María Teresa Flórez Molina University of Antioquia
  • Jaime Palacio Baena University of Antioquia

DOI:

https://doi.org/10.17533/udea.redin.18153

Keywords:

lead, chromium, organic matter, sediment, gold mining, heavy metal action level, hydrological pulse, Flood Plain Lake, mercury

Abstract

The Flood Plain Lakes of the Atlantic Colombian have been impacted by artisanal gold mining during last decades. However, the obtained results have been compared to action levels relevant to other latitudes and the investigations have not included other trace metals of sanitary interest. The present study contributed to understanding the spatial geochemical response controlled by hydrological pulse and organic matter (OM) composition within the Ayapel Flood Plain Lake influence area. We assessed the seasonal and spatial variations of mercury (Hg), lead (Pb), and chromium (Cr) content in recent Ayapel Flood Plain Lake sediments and then compared them with the determined local pollution level of Hg (0.032 μg g-1), Pb (2.39 μg g-1) and Cr (89.58 μg g-1) found in Betulia Formation. The ranges of metal content were 0.008-0.117 μg Hg g-1, 1.090-11.870 μg Pb g-1, and 5.350-93.430 μg Cr g-1. Hg showed the largest spatial variation (0.083 ± 0.064 μg g-1) and the highest values at the distributaries of the former gold mining fronts. About 91 % of samples displayed Pb enrichment (6.376 ± 4.048 μg g-1) and 66.6 % Hg enrichment when compared with the reference levels. In contrast, Cr content was relatively low (96.325 ± 29.868 μg g-1) and showed a decreasing trend from East towards West. The sediment was mainly inorganic (88.154 ± 3.822 %) with depleted OM levels (11.846 ± 3.822 %). The results suggested enhanced Hg motility owing to a high respiration rate of OM about the centre of the main water table. The sediment resuspension and migration was facilitated by thermal instability of the water column influenced by wind action.

|Abstract
= 67 veces | PDF (ESPAÑOL (ESPAÑA))
= 51 veces|

Downloads

Download data is not yet available.

Author Biographies

Alex Fernando Rúa Cardona, University of Antioquia

Environmental management and modeling research group – GAIA.

María Teresa Flórez Molina, University of Antioquia

Environmental management and modeling research group – GAIA.

Jaime Palacio Baena, University of Antioquia

Environmental management and modeling research group – GAIA.

References

M. Florín, C. Montes, F. Rueda. “Origin, hydrologic functioning, and morphometric characteristics of small, shallow, semiarid lakes (Lagunas) in La Mancha, central Spain”. Wetl. Vol. 13. 1993. pp. 247-259.

J. Arnason, B. Fletcher. “A 40+ year record of Cd, Hg, Pb and U deposition in sediments of Patroon Reservoir”. Environ. Pollut. Vol. 123. 2003. pp. 383-391.

D. Ciszewskia, I. Malikb. “The use of heavy metal concentrations and dendrochronology in the reconstruction of sediment accumulation, Mala Panew River Valley, southern Poland”. Geomorphol. Vol. 58. 2004. pp. 161-174.

R. Swennen, I. Van Keer, W. De Vos. “Heavy metal contamination in overbank sediments of the Geul River (East Belgium): its relation to former Pb–Zn mining activities”. Environ. Geol. Vol. 24. 1994. pp. 12-21.

Eco Estudios Ltda. Estudio manejo integral ciénaga de Ayapel. Introducción, descripción general de la zona de estudio, aspectos socioeconómicos. Tomo Nº 1. Corporación Autónoma Regional de los Valles del Sinú y del San Jorge (CVS). Montería, Colombia. 1989.

W. Mitsch, J. Gosselink. Wetlands. 3a . ed. Ed. Wiley New York, USA. 2000. pp. 920.

J. Miller. “The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites”. J Geochem. Explor. Vol. 58. 1997. pp. 01-118.

N. Aguirre, J. Palacio, M. Flórez, A. Wills, O. Caicedo, L. Jímenez, N. Villegas, H. Grajales, C. Palacio. Análisis de la relación río-ciénaga y su efecto sobre la producción pesquera en la ciénaga de Ayapel, Córdoba-Colombia. Colciencias-Código 1115 13 13962. Universidad Nacional de Colombia sede Medellín, Grupo GAIA Universidad de Antioquia. Medellín, Colombia. 2005. pp. 425.

H. Duque-Caro. “Structural style, diapirism and accretionary episodes of the Sinú San Jacinto terrane, southwestern Caribbean borderland”. W. Bonini, R. Hargraves, R. Shagam (Eds). The South AmericanCaribbean Plate Boundary and Regional Tectonics. Geol. Soc. Amer. Mem. Vol. 162. 1984. pp. 303-316.

Icontec Internacional. NTC 1495. Suelos. Ensayo para determinar el contenido de humedad de suelos y rocas, con base en la masa. Medio ambiente, protección de la salud, seguridad. Ed. Instituto Colombiano de Norma Técnica y certificación. Bogotá, Colombia. 2001. pp. 9.

Icontec Internacional. NTC 435. 1971 Azufre Determinación de cenizas. “Tecnología Química”. Ed. Instituto Colombiano de Norma Técnica y Certificación. Bogotá, Colombia. 1971. pp. 4.

Soil Survey Laboratory (SSL). Methods Manual. Soil survey investigations Report Nº42. Version 3.0. United States Department of Agriculture (USDA). Lincoln, US. 1996. pp. 693

Method 7471A, U.S. Environmental Protection Agency. “Mercury in solid or semisolid waste”. Disponible en: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/7471b.pdf. Consultado el 20 Mayo 2013.

American Public Health Association; American Water Works Association. “Water Pollution Control Federation”. Métodos normalizados para el análisis de aguas potables y residuales. 17a . ed. Ed. Díaz de Santos, S.A. Madrid, España. 1992. pp. 1816.

Method 2.002, U.S. Environmental Protection Agency. “Sample preparation procedure for espectrochemical determination of total recoverable elements”. Ohio, USA. 1994. pp. 12. Disponible en: http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_200_2.pdf. Consultado el 20 Mayo 2013.

T. He, J. Lu, F. Yang, X. Feng. “Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario”. Sci. Total. Environ. Vol. 386. 2007. pp. 53-64.

O. Nriagu. “Global metal pollution: Poisoning the biosphere”. Environment. Vol. 32. 1990. pp. 8-11, 28-33.

P. Cordy, M. Veiga, I. Salih, S. Al-Saadi, S. Console, O. García, L. Mesa, P. Velázquez, M. Roeser. “Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world’s highest per capita mercury pollution”. Sci. Total. Environ. Vol. 410-411. 2011. pp. 154-160.

N. Pirrone, S. Cinnirella, X. Feng, R. Finkelman, H. R. Friedli, J. Leaner, R. Mason, A. Mukherjee, G. B. Stracher, D. Streets, K. Telmer. “Global mercury emissions to the atmosphere from anthropogenic and natural sources”. Atmos. Chem. Phys. Discuss. Vol. 10. 2010. pp. 4719-4752.

S. Villabona, N. Aguirre, A. Estrada. “Influencia de las macrófitas sobre la estructura poblacional de rotíferos y microscrustáceos en un plano de inundación tropical”. Rev. Biol. Trop. Vol. 59. 2011. pp. 853-870.

Y. Montoya, N. Aguirre. “Cambios nictemerales de variables físicas y químicas en la Ciénaga de Paticos, complejo cenagoso de Ayapel, Colombia”. Rev. Biol. Trop. Vol. 57. 2009. pp. 635-646.

E. Hernández, N. Aguirre, J. Palacio, J. Ramírez. “Variación espacio-temporal de la asociación fitoplanctónica en diferentes momentos del pulso hidrológico en la ciénaga de Ayapel (Córdoba), Colombia.” Actual. Biol. Vol. 30. 2008. pp. 67-81

D. Chalarca, R. Mejía, N. Aguirre. “Aproximación a la determinación del impacto de los vertimientos de las aguas residuales domésticas del municipio de Ayapel, sobre la calidad del agua de la ciénaga”. Rev. Fac. Ing. Univ. Antioquia. Vol. 40. 2007. pp. 41-58.

L. Hylander, M. Meili. “500 years of mercury production: global annual inventory by region until 2000 and associated emissions”. Sci. Total. Environ. Vol. 304. 2003. pp. 13-27.

L. Bethell. The Cambridge history of Latin America. “Vol II: Colonial Latin America”. 1a. ed. Ed. Cambridge University press. Cambridge.1984. pp. 932.

J. Nriagu. “Mercury pollution from the past mining of gold and silver in the Americas”. Sci. Total. Environ. Vol. 149. 1994. pp. 167-181.

M. Veiga, P. Maxson, L. Hylander. “Origin and consumption of mercury in small-scale gold mining”. J. Clean. Prod. Vol 14. 2006. pp. 436-447.

F. Iskander, H. Vega, E. Manzanares. “Determination of mercury and other elements in La Zacatecana Dam sediment in Mexico.” Sci. Total. Environ.Vol. 148. 1994. pp. 45-48.

R. Villas. “The mercury problem in the Amazon due to gold extraction”. J. Geochem. Explor. Vol. 58. 1997. pp. 217-222.

L. de Lacerda. “Amazon mercury emissions”. Nat. Vol. 374. 1995. pp. 20-21.

N. Belzile, L. Chun, C. Yu, W. Mohui. “The competitive role of organic carbon and dissolved sulfide in controlling the distribution of mercury in freshwater lake sediments”. Sci. Total. Environ. Vol. 405. 2008. pp. 226-238.

J. Olivero, B. Restrepo. “Niveles de mercurio en muestras ambientales y de cabello en habitantes del sur de Sucre”. El lado gris de la minería del oro: la contaminación con mercurio en el norte de Colombia. 1a. ed. Ed. Sección Publicaciones Universidad de Cartagena. Cartagena, Colombia. 2002. pp. 123.

C. Restrepo, M. Toro, N. Aguirre. “Aproximación a la dinámica del transporte del nitrógeno y del fósforo en la ciénaga de Ayapel”. Av. Recur. Hidraul. Vol. 13. 2006. pp. 7-22.

C. Gagnon, E. Pelletier, A. Mucci. “Behaviour of anthropogenic mercury in coastal marine sediments”. Mar. Chem. Vol. 59. 1997. pp. 159-176.

J. Olivero, B. Solano. “Mercury in Environmental Samples From a Waterbody Contaminated by Gold Mining in Colombia, South America”. Sci. Total. Environ. Vol. 217. 1998. pp. 83-89.

S. Libes. Introduction to marine biogeochemistry.“Types of trace element distributions”. 2a. ed. Ed. Elsevier. London, England. 2009. pp. 909.

F. Albarède. Geochemistry an introduction. “Mass conservation and elemental fractionation”. 2a. ed. Ed. Cambridge University Press. Cambridge. 2009. pp. 342.

Published

2014-01-20

How to Cite

Rúa Cardona, A. F., Flórez Molina, M. T., & Palacio Baena, J. (2014). Variations of seasonal and spatial Hg, Pb, Cr and organic matter contents in Ayapel Flood Plain Lake sediments, Córdoba, northwest Colombia. Revista Facultad De Ingeniería Universidad De Antioquia, (69), 244–255. https://doi.org/10.17533/udea.redin.18153

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 > >> 

You may also start an advanced similarity search for this article.