Diseño y Simulación de un Sistema de Determinación de Actitud basado en el Filtro Extendido de Kalman para el Cubesat Colombia I

Autores/as

  • Cesar A. Castellanos Universidad Distrital FJC
  • Lilia Edith Aparicio Pico Universidad Distrital FJC

DOI:

https://doi.org/10.17533/udea.redin.18658

Palabras clave:

filtro extendido de Kalman, algoritmo determinístico y no determinístico, picosatélite Colombia I, sistema de determinación de actitud

Resumen

El  propósito  de  este  documento  es  describir  el  diseño  y  simulación  de  un  Sistema  de  Determinación  de  Actitud  (ADS)  para  el  picosatélite  Cubesat  Colombia I, basado en el Filtro Extendido de Kalman (EKF) [1, 2] . En este desarrollo  la  propagación  del  estado  del  sistema  ha  sido  implementada  a  través de un procedimiento Runge-Kutta a cambio del método tradicional por matriz de transición de estado, mejorando las predicciones del filtro EKF, sin hacer  mediciones  directas  de  velocidad  angular  .  Se  obtuvo  una  reducción  del  tiempo  de  predicción  incorporando  un  algoritmo  determinístico  (El algoritmo TRIAD) dentro del EKF. Los resultados mostrados en este artículo se validaron mediante simulación.

|Resumen
= 123 veces | PDF
= 92 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Cesar A. Castellanos, Universidad Distrital FJC

Grupo de investigación GITEM, Facultad de Ingeniería.

Lilia Edith Aparicio Pico, Universidad Distrital FJC

Facultad de Ingeniería.

Citas

R. Brown, P. Hwang. Introduction to random signals and applied Kalman filtering. 3rd ed. Ed. John Wiley and Sons. USA. 1999. pp. 190-242, 335-377.

G. Welch, G. Bishop. An Introduction to the Kalman Filter, SIGGRAPH 2001 course 8. In Computer Graphics. Annual Conference on Computer Graphics & Interactive Techniques. Los Angeles, USA. 2001. pp. 23-33.

R. Wisniewski. Satellite Attitude Control Using Only Electromagnetic Actuation. Ph.d. Thesis. Department of Control Engineering. University of Aalborg. Aalborg, Denmark. 1997. pp.71-85 DOI: https://doi.org/10.2514/6.1997-3479

R.Wertz. Spacecraft Attitude Determination and Control. 4th ed. Ed. Springer. Boston, USA. 2002. pp. 485-502

Group 05 gr 833..Attitude Determination for AAUSATII. Department of Control Engineering, Aalborg University. Aalborg, Denmark. 2005.pp.55-70.

K. Krogh, E. Schreder. Attitude Determination for AAU Cubesat. Control Engineering Department, University of Aalborg. Aalborg, Denmark. 2002. pp. 42-57.

T. Bak. Spacecraft Attitude Determination - A magnetometer approach. Ph.d. Thesis. Control Engineering Department, University of Aalborg. Aalborg, Denmark. 1999. pp. 23-65.

J. Maybeck, S. Peter. Stochastic models, estimation and control. University of Southern California. Ed. Academic Press. Ohio, USA. Vol 141. 1979. pp. 342- 358.

F. Ruiz. Design of an Attitude Determination System for Picosatellite Colombia I. Thesis. group GITEM. Universidad Distrital FJC. Bogotá DC., Colombia. 2010. pp.25-32.

D. Bhanderi, Spacecraft Attitude Determination with Earth Albedo Corrected Sun Sensor Measurements. Ph.d. Thesis. Aalborg University. Aalborg, Denmark. 2005. pp. 52-105.

A. Pontus. “Attitude Estimation from Magnetometer and Earth-Albedo-Corrected Coarse Sun Sensor Measurements”. Acta Astronautica. Vol. 56. 2005. pp. 115-126. DOI: https://doi.org/10.1016/j.actaastro.2004.09.001

H. Black. “A passive system for determining the attitude of a satellite”. American Institute of Aeronautics and Astronautics Journal. Vol. 2. 1964. pp. 1350-1351. DOI: https://doi.org/10.2514/3.2555

Ogata, Katsuhiko. Modern, Control Engineering. 2nd ed. Ed. Prentice-Hall. Minnesota, USA.1993. pp. 334- 337.

T. Arif. A Satellite Attitude Control Algorithm. 2010. 2nd International Conference on Computer Research and Development. Huala Lumpur, Malaysia. 2010. pp. 666-670. DOI: https://doi.org/10.1109/ICCRD.2010.154

G. Sun, W. Huo. Adaptive Fuzzy Predictive Control of Satellite Attitude Based on Hierarchical Fuzzy Systems. International Conference on Intelligent System Design and Engineering Application. Changsha, China. 2010. pp. 208-211. DOI: https://doi.org/10.1109/ISDEA.2010.252

Y. Zhou, W. Huo. Quaternion-Based Direct Adaptive Fuzzy Predictive Control for Attitude Tracking of Satellites. IEEE International Conference on Intelligent Computing and Intelligent Systems. No. 2. Shanghai, China. 2009. pp. 510-516. DOI: https://doi.org/10.1109/ICICISYS.2009.5358342

C. Cheng, S. Shu. “Application of Fuzzy Controllers for Spacecraft Attitude Control”. IEEE Transactions on Aerospace and Electronic Systems. Vol. 45. 2009. pp. 761-765. DOI: https://doi.org/10.1109/TAES.2009.5089557

B. Rani, C. Gomathy, B. Sowmya, R. Narmadha, “Attitude Determination and Control System of Sathyabamasat.” Recent Advances in Space Technology Services and Climate Change. Proceedings of a meeting held 13-15 November. Chennai, India. 2010. pp. 326-329. DOI: https://doi.org/10.1109/RSTSCC.2010.5712821

C. Pukdeboon. Dynamic Output Feedback Sliding Mode Control for Spacecraft Attitude Manouvers. ECTI-CON 2011. 2011. pp. 545-548. DOI: https://doi.org/10.1109/ECTICON.2011.5947896

C. Pukdeboon, A. Zinober. Optimal Sliding Mode Controllers for Attitude Tracking of Spacecraft. 18th IEEE International Conference on Control Applications. St.Petersburg, Russia. 2009. pp. 1708- 1713. DOI: https://doi.org/10.1109/CCA.2009.5281130

C. Li, Y. Wang, L. Xu, Z. Zhang. Spacecraft Attitude Stabilization Using Optimal Sliding Mode Control. 3rd International Symposium on Systems and Control in Aeronautics and Astronautics. Harbin, China. 2010. pp. 1085-1089.

H. Shou, J. Sheu, J.Wang. Micro-Satellite Detumbling Mode Attitude Determination and Control: UKF Approach. 8th IEEE International Conference on Control and Automation. Xiamen, China. 2010. pp. 673-678. DOI: https://doi.org/10.1109/ICCA.2010.5524162

N. Chaturvedi, A. Sanyal, N. McClamroch.“RigidBody Attitude Control Using Rotation Matrices for Continuous, Singularity-Free Control Laws.” IEEE Control Systems Magazine. Vol 31. 2011. pp. 30-51. DOI: https://doi.org/10.1109/MCS.2011.940459

Descargas

Publicado

2014-02-27

Cómo citar

Castellanos, C. A., & Aparicio Pico, L. E. (2014). Diseño y Simulación de un Sistema de Determinación de Actitud basado en el Filtro Extendido de Kalman para el Cubesat Colombia I. Revista Facultad De Ingeniería Universidad De Antioquia, (70), 146–154. https://doi.org/10.17533/udea.redin.18658