Performance of a Genetic Algorithm applied to robust design in multiobjective systems under different levels of fractioning




Taguchi methods, parameter design, genetic algorithms, performance analysis


This paper studies the performance of a Genetic Algorithm (GA) to find solutions to problems of robust design in multiobjective systems with many control and noise factors, representing the output vector in a single aggregation function. The results show that the GA is able to find solutions that achieve a good adjustment of the responses to their corresponding target values and with low variability, even with highly fractional experimental designs, which provide a limited number of data points to be fed to the GA. This conclusion is important for the practical application of the GA to robust design studies. Generally, such studies are carried out using scarce resources and dealing with other limitations, which force the engineer to use few experimental treatments and gather a limited amount of data. Thus, knowing that the GA performs well under such situation expands its applicability.

= 126 veces | PDF
= 179 veces|


Download data is not yet available.

Author Biographies

Enrique Carlos Canessa-Terrazas, Universidad Adolfo Ibáñez

Facultad de Ingeniería y Ciencias

Héctor Allende-Olivares, Universidad Técnica Federico Santa Marí

Departamento de Informática


G. Taguchi. Systems of experimental design. 4th ed. Ed. American Supplier Institute. Dearborn, USA. 1991. pp. 16-511.

A. Hajiloo, N. Nariman, A. Moeini. “Pareto optimal robust design of fractional-order PID controllers for systems with probabilistic uncertainties”. Mechatronics. Vol. 22. 2012. pp. 788-801.

K. Ballantyne, R. Oorschot, R. Mitchell. “Reduce optimisation time and effort: Taguchi experimental design methods”. Forensic Science International: Genetics Supplement Series. Vol. 1. 2008. pp. 7-8.

S. Maghsoodloo, G. Ozdemir, V. Jordan, C. Huang. “Strengths and limitations of Taguchi’s contributions to quality, manufacturing, and process engineering”. Journal of Manufacturing Systems. Vol. 23. 2004. pp. 73-126.

R. Roy. Design of Experiments Using the Taguchi Approach. 1st ed. Ed. J. Wiley & Sons. New York, USA. 2001. pp. 8-513.

H. Allende, E. Canessa, J. Galbiati. Diseño de Experimentos Industriales. 1st ed. Ed. Universidad Técnica Federico Santa María. Valparaíso, Chile. 2005. pp. 27-200.

H. Allende, D. Bravo, E. Canessa. “Robust design in multivariate systems using genetic algorithms”. Quality & Quantity Journal. Vol. 44. 2010. pp. 315- 332.

E. Canessa, C. Droop, H. Allende. “An improved genetic algorithm for robust design in multivariate systems”. Quality & Quantity Journal. Vol. 42. 2011. pp. 665-678.

A. Jamali, A. Hajiloo, N. Nariman. “Reliabilitybased robust Pareto design of linear state feedback controllers using a multi-objective uniform-diversity genetic algorithm (MUGA)”. Expert Systems with Applications. Vol. 37. 2010. pp. 401-413.

O. Köksoy, T. Yalcinoz. “Robust design using Pareto type optimization: a genetic algorithm with arithmetic crossover”. Computers & Industrial Engineering. Vol. 55. 2008. pp. 208-218.

K. Sörensen. “Metaheuristics—the metaphor exposed”. International Transactions in Operational Research. Vol. 22. 2015. pp. 3-18.

Z. Michalewicz. Quo vadis, evolutionary computation? Proceedings of the 2012 World Congress Conference on Advances in Computational Intelligence. Berlin, Germany. 2012. pp. 98-121.

E. Castillo, D. Montgomery, D. McCarville. “Modified desirability functions for multiple response optimization”. Journal of Quality Technology. Vol. 28. 1996. pp. 337-345.

F. Ortiz, J. Simpson, J. Pigniatiello, A. Heredia. “A Genetic Algorithm Approach to Multiple – Response Optimization”. Journal of Quality Technology. Vol. 36. 2004. pp. 432-449.

K. Farhad, D. Hassani. “The effects of parameter settings on the performance of genetic algorithm through experimental design and statistical analysis”. Advanced Materials Research. Vol. 433-440. 2012. pp. 5994-5999.

H. Marziyeh, B. Hossein, K. Farhad. “Evaluating the effects of parameters setting on the performance of genetic algorithm using regression modeling and statistical analysis”. Journal of Industrial Engineering. Vol. 45. 2011. pp. 61-68.

O. Abdul, M. Munetomo, K. Akama. “An adaptive parameter binary-real coded genetic algorithm for constraint optimization problems: Performance analysis and estimation of optimal control parameters”. Information Sciences. Vol. 233. 2013. pp. 54-86.

A. Eiben, S. Smit. “Parameter tuning for configuring and analyzing evolutionary algorithms”. Swarm and Evolutionary Computation. Vol. 1. 2011. pp. 19-31.

M. Kaya. “The effects of two new crossover operators on genetic algorithm performance”. Applied Soft Computing. Vol. 11. 2011. pp. 881-890.

S. Smit, A. Eiben. Parameter tuning of evolutionary algorithms: generalist vs. specialist. Proceedings of the International Conference on Applications of Evolutionary Computation. Berlin, Germany. 2010. pp. 542-551.

I. Falco, A. Della, E. Tarantino. “Mutation-based genetic algorithm: performance evaluation”. Applied Soft Computing. Vol. 1. 2002. pp. 285-299.

P. Pongcharoen, D. Stewardson, C. Hicks, P. Braiden. “Applying designed experiments to optimize the performance of genetic algorithms used for scheduling complex products in the capital goods industry”. Applied Statistics. Vol. 28. 2001. pp. 441-455.

K. Hinkelmann, O. Kempthorne. Design and analysis of experiments. 1st ed. Ed. John Wiley & Sons. New York, USA. 1994. p. 177-181.




How to Cite

Canessa-Terrazas, E. C., & Allende-Olivares, H. (2015). Performance of a Genetic Algorithm applied to robust design in multiobjective systems under different levels of fractioning. Revista Facultad De Ingeniería Universidad De Antioquia, (75), 80–94.

Most read articles by the same author(s)