Preparación de catalizadores de carbón activado estructurados. Un caso de estudio: síntesis limpia de dimetil carbonato a partir de metanol y CO2
DOI:
https://doi.org/10.17533/udea.redin.n78a05Palabras clave:
pellets, carbón activado, CO2, catalizador Cu-Ni, dimetil carbonatoResumen
Se presenta la síntesis del catalizador bimetálico de Cu-Ni soportado en pellets de carbón activado utilizando carboximetilcelulosa (CMC) como agente aglutinante. Se evaluó el efecto de las condiciones de preparación, tales como concentración de CMC, relación de CMC/Carbón activado, temperatura y velocidad de calentamiento en la pirólisis sobre el área la superficial de los pellets sintetizados. La incorporación de los metales (Cu y Ni) en los pellets se efectuó por impregnación húmeda incipiente convencional. El soporte y los catalizadores sintetizados se caracterizaron mediante adsorción de N2, H2-TPR, XRD y técnicas de SEM-EDS. Los catalizadores peletizados se evaluaron en la síntesis directa de dimetil carbonato DMC (caso de estudio), mostrando una actividad catalítica mejorada en comparación con el catalizador en polvo.
Descargas
Citas
N. Díez et al., “A novel approach for the production of chemically activated carbon fibers”, Chem. Eng. J., vol. 260, pp. 463-468, 2015.
E. Gallegos, A. Guerrero, I. Rodriguez and A. Arcoya, “Comparative study of the hydrogenolysis of glycerol over Ru-based catalysts supported on activated carbon, graphite, carbon nanotubes and KL-zeolite”, Chem. Eng. J., vol. 262, pp. 326-333, 2015.
L. Pastor, R. Buitrago and A. Sepúlveda, “CeO2 - promoted Ni/activated carbon catalysts for the water– gas shift (WGS) reaction”, Int. J. Hydrogen Energy, vol. 39, no. 31, pp. 17589-17599, 2014.
J. Zhao et al., “Enhancement of Au/AC acetylene hydrochlorination catalyst activity and stability via nitrogen-modified activated carbon support”, Chem. Eng. J., vol. 262, pp. 1152-1160, 2015.
D. Gudarzi, W. Ratchananusorn, I. Turunen, M. Heinonen and T. Salmi, “Promotional effects of Au in Pd–Au bimetallic catalysts supported on activated carbon cloth (ACC) for direct synthesis of H2 O2 from H2 and O2 ”, Catal. Today., vol. 248, pp. 1-11, 2014.
G. Zhang, A. Su, Y. Du, J. Qu and Y. Xu, “Catalytic performance of activated carbon supported cobalt catalyst for CO2 reforming of CH4 ”, J. Colloid Interface Sci., vol. 433, pp. 149-155, 2014.
L. Xu et al., “Catalytic CH4 reforming with CO2 over activated carbon based catalysts”, Appl. Catal. A Gen., vol. 469, pp. 387-397, 2014.
T. Bao et al., “Supported CcoO4 -CceO2 catalysts on modified activated carbon for CO preferential oxidation in H2 -rich gases”, Appl. Catal. B Environ., vol. 119, pp. 62-73, 2012.
J. Bian et al., “Direct synthesis of dimethyl carbonate over activated carbon supported Cu-based catalysts”, Chem. Eng. J., vol. 165, pp. 686-692, 2010.
J. Bian et al., “Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper–nickel/graphite bimetallic nanocomposite catalyst”, Chem. Eng. J., vol. 147, no. 2-3, pp. 287-296, 2009.
J. Bian, M. Xiao, S. Wang, Y. Lu and Y. Meng, “Direct synthesis of DMC from CH3 OH and CO2 over V-doped Cu–Ni/AC catalysts”, Catal. Commun., vol. 10, pp. 1142- 1145, 2009.
H. Xie, et al.,“Investigating the performance of CoxOy/ activated carbon catalysts for ethyl acetate catalytic combustion”, Appl. Surf. Sci., vol. 326, pp. 119-123, 2015.
O. Arbeláez, A. Orrego, F. Bustamante and A. Villa, “Direct Synthesis of Diethyl Carbonate from CO2 and CH3 CH2 OH Over Cu–Ni/AC Catalyst”, Top. Catal., vol. 55, no. 7, pp. 668-672, 2012.
P. Lazaridis et al., “D-Glucose hydrogenation/ hydrogenolysis reactions on noble metal (Ru, Pt)/ activated carbon supported catalysts”, Catal. Today, vol. 257, pp. 281-290, 2015.
A. Al-Hassani, H. Abbas and W. Wan Daud, “Hydrogen production via decomposition of methane over activated carbons as catalysts: Full factorial design”, Int. J. Hydrogen Energy, vol. 39, no. 13, pp. 7004-7014, 2014.
E. Liakakou, E. Heracleous, K. Triantafyllidis and A. Lemonidou, “K-promoted NiMo catalysts supported on activated carbon for the hydrogenation reaction of CO to higher alcohols: Effect of support and active metal”, Appl. Catal. B Environ., vol. 165, pp. 296-305, 2015.
E. Mostafavi, N. Mahinpey and V. Manovic, “A novel development of mixed catalyst–sorbent pellets for steam gasification of coal chars with in situ CO2 capture”, Catal. Today, vol. 237, pp. 111-117, 2014.
A. Podgornik, A. Savnik, J. Jančar and N. Krajnc, “Design of monoliths through their mechanical properties”, J. Chromatogr. A., vol. 1333, pp. 9-17, 2014.
Y. Matatov and M. Sheintuch, “Catalytic fibers and cloths”, Appl. Catal. A Gen., vol. 231, no. 1-2, pp. 1-16, 2002.
C. Moreno and A. Pérez, “Carbon-Based Honeycomb Monoliths for Environmental Gas-Phase Applications”, Materials, vol. 3, pp. 1203-1227, 2010.
F. Rezaei and P. Webley, “Structured adsorbents in gas separation processes”, Sep. Purif. Technol., vol. 70, no. 3, pp. 243-256, 2010.
D Lozano, D Cazorla, A Linares and D. Quinn, “Activated carbon monoliths for methane storage: influence of binder”, Carbon, vol. 40, pp. 2817-2825, 2002.
K. Smith, G. Fowler, S. Pullket and N. Graham, “The production of attrition resistant, sewage–sludge derived, granular activated carbon”, Sep. Purif. Technol., vol. 98, pp. 240-248, 2012.
A. Dashevsky, K. Kolter and R. Bodmeier, “Compression of pellets coated with various aqueous polymer dispersions”, Int. J. Pharm., vol. 279, pp. 19-26, 2004.
F. Yu, L. Luo and G. Grevillot, “Adsorption Isotherms of VOCs onto an Activated Carbon Monolith: Experimental Measurement and Correlation with Different Models”, J. Chem. Eng. Data, vol. 47, no. 3, pp. 467-473, 2002.
J. Bian, M. Xiao, S. Wang, Y. Lu and Y. Meng, “Highly effective direct synthesis of DMC from CH3 OH and CO2 using novel Cu–Ni/C bimetallic composite catalysts”, Chinese Chem. Lett., vol. 20, pp. 352-355, 2009.
R. Saada, S. Kellici, T. Heil, D. Morgan and B. Saha, “Greener Synthesis of Dimethyl Carbonate using a Novel Ceria-Zirconia Oxide/Graphene Nanocomposite Catalyst”, Appl. Catal. B Environ., vol. 168, pp. 353- 362, 2014.
J. Wang, W. Zhu, S. Yang, W. Wang and Y. Zhou, “Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts”, Appl. Catal. B Environ., vol. 78, pp. 30-37, 2008.
G. Leofanti et al., “Catalyst characterization: characterization techniques”, Catal. Today, vol. 34, pp. 307-327, 1997.
A. Mikrajuddin and K. Khairurrijal, “Derivation of Scherrer Relation Using an Approach in Basic Physics Course”, J. Nanosains, vol. 1, pp. 28-32, 2008.
C. Li and S. Zhong, “Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3 OH over Cu–KF/MgSiO catalyst”, Cat. Today, vol. 82, pp. 83- 90, 2003.
K. Almusaitee, “Synthesis of dimethyl carbonate (DMC) from methanol and CO2 over Rh-supported catalysts”, Catal. Comm., vol. 10, pp. 1127-1131, 2009.
D. de Britto and O. Assis, “Thermal degradation of carboxymethylcellulose in different salty forms”, Thermochimica Acta, vol. 494, pp. 115-122, 2009.
P. Webb and C. Orr, Analytical methods in fine particle technology, 1st ed. Norcross, USA: Micromeritics Instrument Corporation, 1997.
F. Delannay, Characterization of Heterogeneous Catalysts, 1st ed. New York, USA: Marcel Dekker, Inc., 1984.
J. Bian, M. Xiao, S. Wang, Y. Lu and Y. Meng, “Highly effective direct synthesis of DMC from CH3 OH and CO2 using novel Cu–Ni/C bimetallic nanocomposite catalysts”, Chin. Chem. Lett., vol. 20, no. 3, pp. 352-355, 2009.
T. Theivasanthi and M. Alagar, “Nano sized copper particles by electrolytic synthesis and characterizations”, Int. J. Physical Sci., vol. 6, pp. 3662- 3671, 2011.
J. Ashok and S. Kawi, “Steam reforming of toluene as a biomass tar model compound over CeO2 promoted Ni/ CaO–Al2 O3 catalytic systems”, Int. J. Hydrogen Energy, vol. 38, no. 32, pp. 13938-13949, 2013.
I. Baskaran, T. Sankara and A. Stephen, “Pulsed electrodeposition of nanocrystalline Cu–Ni alloy films and evaluation of their characteristic properties”, Mater. Lett., vol. 60, no. 16, pp. 1990-1995, 2006.
C. Jung, H. Lee, C. Kim and S. Bhaduri, “Synthesis of Cu – Ni alloy powder directly from metal salts solution”, J. Nanopart. Res., vol. 5, pp. 383-388, 2003.
B. Hammer and J. Nørskov, “Theoretical Surface Science and Catalysis—Calculations and Concepts”, Advances in Catalysis, vol. 45, pp. 71-129, 2000.
G. Leofanti, M. Padovan, G. Tozzola and B. Venturelli, “Surface area and pore texture of catalysts”, Catal. Today, vol. 41, pp. 207-219, 1998.
C. Chen, J. Lin, T. Lai and B. Li, “Active sites on Cu/SiO2 prepared using the atomic layer epitaxy technique for a low-temperature water–gas shift reaction”, J. Catal., vol. 263, pp. 155-166, 2009.
M. Cangiano, M. Ojeda, A. Carreras, J. González and M. Ruiz, “A study of the composition and microstructure of nanodispersed Cu–Ni alloys obtained by different routes from copper and nickel oxides”, Mater. Charact., vol. 61, pp. 1135-1146, 2010.
O. Ilinich, W. Ruettinger, X. Liu and R. Farrauto, “Cu– Al2 O3 –CuAl2 O4 water–gas shift catalyst for hydrogen production in fuel cell applications: Mechanism of deactivation under start–stop operating conditions”, J. Catal., vol. 247, pp. 112-118, 2007.
X. Zhang, Y. Zhang, Q. Liu and W. Zhou, “Surface properties of activated carbon from different raw materials”, Int. J. Min. Sci. Technol., vol. 22, pp. 483-486, 2012.
J. Bian, M. Xiao, S. Wang, Y. Lu and Y. Meng, “Carbon nanotubes supported Cu–Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide”, Appl. Surf. Sci., vol. 255, no. 16, pp. 7188-7196, 2009.
X. Wu, M. Xiao, Y. Meng and Y. Lu, “Direct synthesis of dimethyl carbonate on H3 PO4 modified V2 O5 ”, J. Mol. Catal. A Chem., vol. 238, pp. 158-162, 2005.
A. Aouissi, A. Apblett, Z. AL-Othman and A. Al-Amro, “Direct synthesis of dimethyl carbonate from methanol and carbon dioxide using heteropolyoxometalates: the effects of cation and addenda atoms”, Transit. Met. Chem., vol. 35, pp. 927-931, 2010.
X. Wu, Y. Meng, M. Xiao and Y. Lu, “Direct synthesis of dimethyl carbonate (DMC) using Cu-Ni/VSO as catalyst”, J. Mol. Catal. A Chem., vol. 249, pp. 93- 97, 2006.
J. Zawadzki, B. Azambre, O. Heintz, A. Krztoń and J. Weber, “IR study of the adsorption and decomposition of methanol on carbon surfaces and carbon-supported catalysts”, Carbon, vol. 38, no. 4, pp. 509-515, 2000.
F. Bustamante, A. Orrego, S. Villegas and A. Villa, “Modeling of Chemical Equilibrium and Gas Phase Behavior for the Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol”, Industrial & Engineering Chemistry Research, vol. 51, pp. 8945-8956, 2012.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.