Síntesis en fase gaseosa de dimetil carbonato con CO2 y CH3OH sobre Cu-Ni/AC. Estudio cinético
DOI:
https://doi.org/10.17533/udea.redin.20190941Palabras clave:
metanol, catalizadores, mecanismo de reacción, velocidad de reacción, análisis FT-IR in situResumen
Se reporta la actividad catalítica en la formación de dimetil carbonato a partir de dióxido de carbono y metanol sobre catalizadores mono y bimetálicos de Cu-Ni soportado en carbón activado. Los catalizadores bimetálicos presentaron una mayor actividad catalítica que los monometálicos, siendo la muestra Cu:Ni-2:1 el mejor catalizador. La caracterización de los materiales mediante análisis de difracción de rayos X, microscopía electrónica de transmisión y dispersión metálica permitieron sugerir una explicación al porqué de su mejor desempeño. Se realizaron experimentos de FT-IR in situ para investigar el mecanismo de formación de carbonato de dimetilo a partir de metanol y dióxido de carbono sobre Cu-Ni: 2-1. Se estudió la cinética de la síntesis directa de dimetil carbonato en fase gaseosa sobre Cu:Ni-2:1 soportado en carbón activado, a 12 bar y temperaturas entre 90 °C y 130 °C, como función de la presión parcial del dióxido de carbono y del metanol. Los datos experimentales fueron consistentes con un mecanismo Langmuir-Hinshelwood, el cual incluyó la adsorción de dióxido de carbono y metanol sobre los sitios activos del catalizador (Cu, Ni, y Cu-Ni), siendo la reacción del dióxido de carbono adsorbido con las especies metoxi como etapa limitante. La energía de activación aparente estimada de la reacción fue 94.2 kJ mol-1.
Descargas
Citas
A. Kumar, S. Krishnakumar, and B. Rajasekhar, “Experimental and computational VUV photoabsorption study of dimethyl carbonate: A green solvent,” J. Quant. Spectrosc. Radiat. Transf., vol. 217, September 2018. [Online]. Available: https://doi.org/10.1016/j.jqsrt.2018.05.039
J. P. Parrish, R. N. Salvatore, and K. W. Jung, “Perspectives on alkyl carbonates in organic synthesis,” Tetrahedron., vol. 56, no. 42, pp. 8207–8237, 2000.
Y. Ono, “Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block,” Appl Catal A Gen., vol. 155, no. 2, July 31 1997. [Online]. Available: https://doi.org/10.1016/S0926-860X(96)00402-4
Y. Yuan, W. Cao, and W. Weng, “CuCl2 immobilized on aminofunctionalized MCM-41 and MCM-48 and their catalytic performance toward the vapor-phase oxy-carbonylation of methanol to dimethyl carbonate,” J Catal., vol. 288, no. 2, December 10 2004. [Online]. Available: https://doi.org/10.1016/j.jcat.2004.09.003
R. Naejus, R. Coudert, P. Willmann, and D. Lemordant, “Ion solvation in carbonate-based lithium battery electrolyte solutions,” Electrochim. Acta, vol. 43, no. 3-4, 1998. [Online]. Available: https://doi.org/10.1016/S0013-4686(97)00073-X
D. Li, W. Fang, Y. Xing, and R. Lin, “Effects of dimethyl or diethylcarbonate as an additive volatility and flash point of an aviation fuel,” J Hazard Mater., vol. 161, no. 2-3, January 30 2009. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2008.04.070
H. Tan and et al., “Review on the synthesis of dimethyl carbonate,” Catal Today., vol. 316, October 15 2018. [Online]. Available: https://doi.org/10.1016/j.cattod.2018.02.021
Z. Hou and et al., “High-yield synthesis of dimethyl carbonate from the direct alcoholysis of urea in supercritical methanol,” Chem. Eng. J., vol. 236, January 15 2014. [Online]. Available: https://doi.org/10.1016/j.cej.2013.09.024
G. Zhang and et al., “Effect of carbon support on the catalytic performance of Cu-based nanoparticles for oxidative carbonylation of methanol,” Appl. Surf. Sci., vol. 455, October 15 2018. [Online]. Available: https://doi.org/10.1016/j.apsusc.2018.05.114
A. H. Tamboli, A. A. Chaugule, and H. Kim, “Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol,” Chem. Eng. J., vol. 323, September 1 2017. [Online]. Available: https://doi.org/10.1016/j.cej.2017.04.112
R. Guo and et al., “Enhancement of the catalytic performance in Pd-Cu/NaY catalyst for carbonylation of methyl nitrite to dimethyl carbonate: Effects of copper doping,” Catal. Commun., vol. 88, January 5 2017. [Online]. Available: https://doi.org/10.1016/j.catcom.2016.10.007
S. Fujita, B. M. Bhanage, M. Arai, and Y. Ikushima, “Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions: effect of reaction conditions and reaction mechanism,” Green. Chem., vol. 3, no. 2, April 2014. [Online]. Available: https://doi.org/10.1039/b100363l
B. Fan, H. Li, W. Fan, J. Zhang, and R. Li, “Organotin compounds immobilized on mesoporous silicas as heterogeneous catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide,” Appl. Catal. A Gen., vol. 372, no. 1, January 5 2010. [Online]. Available: https://doi.org/10.1016/j.apcata.2009.10.022
K. Tomishige, T. Sakaihori, Y. Ikeda, and K. Fujimoto, “A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia,” Catal. Lett., vol. 58, no. 4, pp. 225–229, May 1999.
K. Tomishige, Y. Furusawa, Y. Ikeda, M. Asadullah, and K. Fujimoto, “CeO2–ZrO2 solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide,” Catal. Lett., vol. 76, no. 1-2, pp. 71–74, Sep. 2001.
Y. Yoshida, Y. Arai, S. Kado, K. Kunimori, and K. Tomishige, “Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts,” Catal. Today, vol. 115, no. 1-4, June 30 2006. [Online]. Available: https://doi.org/10.1016/j.cattod.2006.02.027
M. Aresta and et al., “Influence of Al2O3 on the performance of CeO2 used as catalyst in the direct carboxylation of methanol to dimethylcarbonate and the elucidation of the reaction mechanism,” J. Catal., vol. 269, no. 1, January 1 2010. [Online]. Available: https://doi.org/10.1016/j.jcat.2009.10.014
H. Lee, S. Park, I. Song, and J. Jung, “Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Ga2O3/Ce0.6Zr0.4O2 catalysts: Effect of acidity and basicity of the catalysts,” Catal. Letters., vol. 141, no. 4, pp. 531–537, Apr. 2011.
S. H. Zhong, J. W. Wang, X. F. Xiao, and H. S. Li, “Dimethyl carbonate synthesis from carbon dioxide and methanol over Ni-Cu/MoSiO (VSiO) catalysts,” Stud. Surf. Sci. Catal., vol. 130, 2000. [Online]. Available: https://doi.org/10.1016/S0167-2991(00)80423-1
C. F. Li and S. H. Zhong, “Study on application of membrane reactor in direct synthesis dmc from CO2 and CH3OH over Cu–KF/MgSiO catalyst,” Catal. Today, vol. 82, no. 1-4, July 30 2003. [Online]. Available: https://doi.org/10.1016/S0920-5861(03)00205-0
J. Bian, M. Xiao, S. J. Wang, Y. X. Liu, and Y. Z. Meng, “Highly effective direct synthesis of DMC from CH3OH and CO2 using novel Cu–Ni/C bimetallic composite catalysts,” Chinese Chem. Lett., vol. 20, no. 3, March 2009. [Online]. Available: https://doi.org/10.1016/j.cclet.2008.11.034
J. Bian and M. Xiao and S. J. Wang and Y. X. Liu and Y. Z. Meng, “Carbon nanotubes supported Cu–Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide,” Appl. Surf. Sci., vol. 255, no. 16, May 30 2009. [Online]. Available: https://doi.org/10.1016/j.apsusc.2009.03.057
J. Bian and et al., “Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper–nickel/graphite bimetallic nanocomposite catalyst,” Chem. Eng. J., vol. 147, no. 2-3, April 15 2009. [Online]. Available: https://doi.org/10.1016/j.cej.2008.11.006
A. Aouissi, A. W. Apblett, Z. AL-Othman, and A. Al-Amro, “Direct synthesis of dimethyl carbonate from methanol and carbon dioxide using heteropolyoxometalates: the effects of cation and addenda atoms,” Transit. Met. Chem., vol. 35, no. 8, pp. 927–931, Nov. 2010.
J. Bian and et al., “Direct synthesis of dimethyl carbonate over activated carbon supported Cu-based catalysts,” Chem. Eng. J., vol. 165, no. 2, December 1 2010. [Online]. Available: https://doi.org/10.1016/j.cej.2010.10.002
Y. Chen and et al., “Porous diatomite-immobilized Cu–Ni bimetallic nanocatalysts for direct synthesis of dimethyl carbonate,” J. Nanomater., vol. 2012, 2012. [Online]. Available: http://dx.doi.org/10.1155/2012/610410
H. Chen and et al., “Direct synthesis of dimethyl carbonate from CO2 and CH3OH using 0.4 nm molecular sieve supported Cu-Ni bimetal catalyst,” Chinese J. Chem. Eng., vol. 20, no. 5, October 2012. [Online]. Available: https://doi.org/10.1016/S1004-9541(12)60417-0
F. Bustamante, A. Orrego, S. Villegas, and A. Villa, “Modeling of chemical equilibrium and gas phase behavior for the direct synthesis of dimethyl carbonate from CO2 and methanol,” Ind. Eng. Chem. Res., vol. 51, no. 26, May 29 2012. [Online]. Available: https://doi.org/10.1021/ie300017r
B. Santos, C. Pereira, V. Silva, J. Loureiro, and A. Rodrigues, “Kinetic study for the direct synthesis of dimethyl carbonate from methanol and CO2 over CeO2 at high pressure conditions,” Appl. Catal. A Gen., vol. 455, March 30 2013. [Online]. Available: https://doi.org/10.1016/j.apcata.2013.02.003
C. M. Marin and et al., “Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts,” J. Catal., vol. 340, August 2016. [Online]. Available: https://doi.org/10.1016/j.jcat.2016.06.003
O. Arbeláez, A. Orrego, F. Bustamante, and A. L. Villa, “Direct synthesis of diethyl carbonate from CO2 and CH3CH2OH over Cu–Ni/AC catalyst,” Top. Catal., vol. 55, no. 7-10, pp. 668–672, Jul. 2012.
M. Maeder, Y. M. Neuhold, and G. Puxty, “Application of a genetic algorithm: near optimal estimation of the rate and equilibrium constants of complex reaction mechanisms,” Chemom. Intell. Lab. Syst., vol. 70, no. 2, February 28 2004. [Online]. Available: https://doi.org/10.1016/j.chemolab.2003.11.006
S. Katare, A. Bhan, J. M. Caruthers, W. N. Delgass, and V. Venkatasubramanian, “A hybrid genetic algorithm for efficient parameter estimation of large kinetic models,” Comput. Chem. Eng., vol. 28, no. 12, November 15 2004. [Online]. Available: https://doi.org/10.1016/j.compchemeng.2004.07.002
H. Lynggaard, A. Andreasen, C. Stegelmann, and P. Stoltze, “Analysis of simple kinetic models in heterogeneous catalysis,” Prog. Surf. Sci., vol. 77, no. 3-4, November 2004. [Online]. Available: https://doi.org/10.1016/j.progsurf.2004.09.001
C. Jiang and et al., “Synthesis of dimethyl carbonate from methanol and carbon dioxide in the presence of polyoxometalates under mild conditions,” Appl. Catal. A Gen., vol. 256, no. 1-2, December 30 2003. [Online]. Available: https://doi.org/10.1016/S0926-860X(03)00400-9
J. M. Nougués, M. D. Grau, and L. Puigjaner, “Parameter estimation with genetic algorithm in control of fed-batch reactors,” Chem. Eng. Process. Process. Intensif., vol. 41, no. 4, April 2002. [Online]. Available: https://doi.org/10.1016/S0255-2701(01)00146-5
S. D. Harris, L. Elliott, D. B. Ingham, M. Pourkashanian, and C. W. Wilson, “The optimisation of reaction rate parameters for chemical kinetic modelling of combustion using genetic algorithms,” Comput. Methods. Appl. Mech. Eng., vol. 190, no. 8-10, November 24 2000. [Online]. Available: https://doi.org/10.1016/S0045-7825(99)00466-1
K. Tomishige, Y. Ikeda, T. Sakaihori, and K. Fujimoto, “Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide,” J. Catal., vol. 192, no. 2, June 10 2000. [Online]. Available: https://doi.org/10.1006/jcat.2000.2854
A. F. Orrego and F. Bustamante, “Direct synthesis of dimethyl carbonate from CO2 and methanol in gas-phase,” M.S. thesis, Dept. Chem. Eng., Universidad de Antioquia, Medellin, Colombia, 2014.
S. A. Khromova and et al., “Anisole hydrodeoxygenation over Ni–Cu bimetallic catalysts: The effect of Ni/Cu ratio on selectivity,” Appl. Catal. A Gen., vol. 470, January 30 2014. [Online]. Available: https://doi.org/10.1016/j.apcata.2013.10.046
O. Arbelaez and et al., “Conversion of carbon dioxide and methanol into dimethyl carbonate using Cu-Ni supported on activated carbon. theoretical and in situ FTIR studies,” unpublished.
S. H. Zhong, J. W. Wang, X. F. Xiao, and H. S. Li, “Dimethyl carbonate synthesis from carbon dioxide and methanol over Ni- Cu/MoSiO(VSiO) catalysts,” Stud. Surf. Sci. Catal., vol. 130, 2000. [Online]. Available: https://doi.org/10.1016/S0167-2991(00)80423-1
C. Karakaya, R. Otterstätter, L. Maier, and O. Deutschmann, “Kinetics of the water-gas shift reaction over Rh/Al2O3 catalysts,” Appl. Catal. A Gen., vol. 470, January 30 2014. [Online]. Available: https://doi.org/10.1016/j.apcata.2013.10.030
G. Carotenuto, R. Tesser, M. D. Serio, and E. Santacesaria, “Kinetic study of ethanol dehydrogenation to ethyl acetate promoted by a copper/copper-chromite based catalyst,” Catal. Today, vol. 203, March 30 2013. [Online]. Available: https://doi.org/10.1016/j.cattod.2012.02.054
J. Zawadzki, B. Azambre, O. Heintz, A. Krztoń, and J. Weber, “IR study of the adsorption and decomposition of methanol on carbon surfaces and carbon-supported catalysts,” Carbon, vol. 38, no. 4, 2000. [Online]. Available: https://doi.org/10.1016/S0008-6223(99)00130-X
X. Yin and J. R. Moss, “Recent developments in the activation of carbon dioxide by metal complexes,” Coord Chem Rev., vol. 181, no. 1, January 1999. [Online]. Available: https://doi.org/10.1016/S0010-8545(98)00171-4
S. Y. Zhao, S. P. Wang, Y. J. Zhao, and X. B. Ma, “An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2,” Chinese Chem. Lett., vol. 28, no. 1, January 2017. [Online]. Available: https://doi.org/10.1016/j.cclet.2016.06.003
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.