Gas phase synthesis of dimethyl carbonate from CO2 and CH3OH over Cu-Ni/AC. A kinetic study
DOI:
https://doi.org/10.17533/udea.redin.20190941Keywords:
methanol, catalysts, reaction mechanism, reaction rate, in situ FT-IR analysisAbstract
The catalytic activity for dimethyl carbonate formation from carbon dioxide and methanol over mono and bimetallic Cu:Ni supported on activated carbon is presented. Bimetallic catalysts exhibit higher catalytic activity than the monometallic samples, being Cu:Ni-2:1 (molar ratio) the best catalyst; X-Ray diffraction, transmission electron microscopy, and metal dispersion analysis provided insight into the improved activity. In situ FT-IR experiments were conducted to investigate the mechanism of formation of dimethyl carbonate from methanol and carbon dioxide over Cu-Ni:2-1. The kinetics of the direct synthesis of dimethyl carbonate in gas phase over Cu:Ni-2:1 supported on activated carbon catalyst was experimentally investigated at 12 bar and temperatures between 90 oC and 130 oC, varying the partial pressures of CO2 and methanol. Experimental kinetic data were consistent with a Langmuir–Hinshelwood model that included carbon dioxide and methanol adsorption on catalyst actives sites (Cu, Ni and Cu-Ni), and the reaction of adsorbed CO2 with methoxi species as the rate determining step. The estimated apparent activation energy was 94.2 kJ mol-1.
Downloads
References
A. Kumar, S. Krishnakumar, and B. Rajasekhar, “Experimental and computational VUV photoabsorption study of dimethyl carbonate: A green solvent,” J. Quant. Spectrosc. Radiat. Transf., vol. 217, September 2018. [Online]. Available: https://doi.org/10.1016/j.jqsrt.2018.05.039
J. P. Parrish, R. N. Salvatore, and K. W. Jung, “Perspectives on alkyl carbonates in organic synthesis,” Tetrahedron., vol. 56, no. 42, pp. 8207–8237, 2000.
Y. Ono, “Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block,” Appl Catal A Gen., vol. 155, no. 2, July 31 1997. [Online]. Available: https://doi.org/10.1016/S0926-860X(96)00402-4
Y. Yuan, W. Cao, and W. Weng, “CuCl2 immobilized on aminofunctionalized MCM-41 and MCM-48 and their catalytic performance toward the vapor-phase oxy-carbonylation of methanol to dimethyl carbonate,” J Catal., vol. 288, no. 2, December 10 2004. [Online]. Available: https://doi.org/10.1016/j.jcat.2004.09.003
R. Naejus, R. Coudert, P. Willmann, and D. Lemordant, “Ion solvation in carbonate-based lithium battery electrolyte solutions,” Electrochim. Acta, vol. 43, no. 3-4, 1998. [Online]. Available: https://doi.org/10.1016/S0013-4686(97)00073-X
D. Li, W. Fang, Y. Xing, and R. Lin, “Effects of dimethyl or diethylcarbonate as an additive volatility and flash point of an aviation fuel,” J Hazard Mater., vol. 161, no. 2-3, January 30 2009. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2008.04.070
H. Tan and et al., “Review on the synthesis of dimethyl carbonate,” Catal Today., vol. 316, October 15 2018. [Online]. Available: https://doi.org/10.1016/j.cattod.2018.02.021
Z. Hou and et al., “High-yield synthesis of dimethyl carbonate from the direct alcoholysis of urea in supercritical methanol,” Chem. Eng. J., vol. 236, January 15 2014. [Online]. Available: https://doi.org/10.1016/j.cej.2013.09.024
G. Zhang and et al., “Effect of carbon support on the catalytic performance of Cu-based nanoparticles for oxidative carbonylation of methanol,” Appl. Surf. Sci., vol. 455, October 15 2018. [Online]. Available: https://doi.org/10.1016/j.apsusc.2018.05.114
A. H. Tamboli, A. A. Chaugule, and H. Kim, “Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol,” Chem. Eng. J., vol. 323, September 1 2017. [Online]. Available: https://doi.org/10.1016/j.cej.2017.04.112
R. Guo and et al., “Enhancement of the catalytic performance in Pd-Cu/NaY catalyst for carbonylation of methyl nitrite to dimethyl carbonate: Effects of copper doping,” Catal. Commun., vol. 88, January 5 2017. [Online]. Available: https://doi.org/10.1016/j.catcom.2016.10.007
S. Fujita, B. M. Bhanage, M. Arai, and Y. Ikushima, “Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions: effect of reaction conditions and reaction mechanism,” Green. Chem., vol. 3, no. 2, April 2014. [Online]. Available: https://doi.org/10.1039/b100363l
B. Fan, H. Li, W. Fan, J. Zhang, and R. Li, “Organotin compounds immobilized on mesoporous silicas as heterogeneous catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide,” Appl. Catal. A Gen., vol. 372, no. 1, January 5 2010. [Online]. Available: https://doi.org/10.1016/j.apcata.2009.10.022
K. Tomishige, T. Sakaihori, Y. Ikeda, and K. Fujimoto, “A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia,” Catal. Lett., vol. 58, no. 4, pp. 225–229, May 1999.
K. Tomishige, Y. Furusawa, Y. Ikeda, M. Asadullah, and K. Fujimoto, “CeO2–ZrO2 solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide,” Catal. Lett., vol. 76, no. 1-2, pp. 71–74, Sep. 2001.
Y. Yoshida, Y. Arai, S. Kado, K. Kunimori, and K. Tomishige, “Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts,” Catal. Today, vol. 115, no. 1-4, June 30 2006. [Online]. Available: https://doi.org/10.1016/j.cattod.2006.02.027
M. Aresta and et al., “Influence of Al2O3 on the performance of CeO2 used as catalyst in the direct carboxylation of methanol to dimethylcarbonate and the elucidation of the reaction mechanism,” J. Catal., vol. 269, no. 1, January 1 2010. [Online]. Available: https://doi.org/10.1016/j.jcat.2009.10.014
H. Lee, S. Park, I. Song, and J. Jung, “Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Ga2O3/Ce0.6Zr0.4O2 catalysts: Effect of acidity and basicity of the catalysts,” Catal. Letters., vol. 141, no. 4, pp. 531–537, Apr. 2011.
S. H. Zhong, J. W. Wang, X. F. Xiao, and H. S. Li, “Dimethyl carbonate synthesis from carbon dioxide and methanol over Ni-Cu/MoSiO (VSiO) catalysts,” Stud. Surf. Sci. Catal., vol. 130, 2000. [Online]. Available: https://doi.org/10.1016/S0167-2991(00)80423-1
C. F. Li and S. H. Zhong, “Study on application of membrane reactor in direct synthesis dmc from CO2 and CH3OH over Cu–KF/MgSiO catalyst,” Catal. Today, vol. 82, no. 1-4, July 30 2003. [Online]. Available: https://doi.org/10.1016/S0920-5861(03)00205-0
J. Bian, M. Xiao, S. J. Wang, Y. X. Liu, and Y. Z. Meng, “Highly effective direct synthesis of DMC from CH3OH and CO2 using novel Cu–Ni/C bimetallic composite catalysts,” Chinese Chem. Lett., vol. 20, no. 3, March 2009. [Online]. Available: https://doi.org/10.1016/j.cclet.2008.11.034
J. Bian and M. Xiao and S. J. Wang and Y. X. Liu and Y. Z. Meng, “Carbon nanotubes supported Cu–Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide,” Appl. Surf. Sci., vol. 255, no. 16, May 30 2009. [Online]. Available: https://doi.org/10.1016/j.apsusc.2009.03.057
J. Bian and et al., “Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper–nickel/graphite bimetallic nanocomposite catalyst,” Chem. Eng. J., vol. 147, no. 2-3, April 15 2009. [Online]. Available: https://doi.org/10.1016/j.cej.2008.11.006
A. Aouissi, A. W. Apblett, Z. AL-Othman, and A. Al-Amro, “Direct synthesis of dimethyl carbonate from methanol and carbon dioxide using heteropolyoxometalates: the effects of cation and addenda atoms,” Transit. Met. Chem., vol. 35, no. 8, pp. 927–931, Nov. 2010.
J. Bian and et al., “Direct synthesis of dimethyl carbonate over activated carbon supported Cu-based catalysts,” Chem. Eng. J., vol. 165, no. 2, December 1 2010. [Online]. Available: https://doi.org/10.1016/j.cej.2010.10.002
Y. Chen and et al., “Porous diatomite-immobilized Cu–Ni bimetallic nanocatalysts for direct synthesis of dimethyl carbonate,” J. Nanomater., vol. 2012, 2012. [Online]. Available: http://dx.doi.org/10.1155/2012/610410
H. Chen and et al., “Direct synthesis of dimethyl carbonate from CO2 and CH3OH using 0.4 nm molecular sieve supported Cu-Ni bimetal catalyst,” Chinese J. Chem. Eng., vol. 20, no. 5, October 2012. [Online]. Available: https://doi.org/10.1016/S1004-9541(12)60417-0
F. Bustamante, A. Orrego, S. Villegas, and A. Villa, “Modeling of chemical equilibrium and gas phase behavior for the direct synthesis of dimethyl carbonate from CO2 and methanol,” Ind. Eng. Chem. Res., vol. 51, no. 26, May 29 2012. [Online]. Available: https://doi.org/10.1021/ie300017r
B. Santos, C. Pereira, V. Silva, J. Loureiro, and A. Rodrigues, “Kinetic study for the direct synthesis of dimethyl carbonate from methanol and CO2 over CeO2 at high pressure conditions,” Appl. Catal. A Gen., vol. 455, March 30 2013. [Online]. Available: https://doi.org/10.1016/j.apcata.2013.02.003
C. M. Marin and et al., “Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts,” J. Catal., vol. 340, August 2016. [Online]. Available: https://doi.org/10.1016/j.jcat.2016.06.003
O. Arbeláez, A. Orrego, F. Bustamante, and A. L. Villa, “Direct synthesis of diethyl carbonate from CO2 and CH3CH2OH over Cu–Ni/AC catalyst,” Top. Catal., vol. 55, no. 7-10, pp. 668–672, Jul. 2012.
M. Maeder, Y. M. Neuhold, and G. Puxty, “Application of a genetic algorithm: near optimal estimation of the rate and equilibrium constants of complex reaction mechanisms,” Chemom. Intell. Lab. Syst., vol. 70, no. 2, February 28 2004. [Online]. Available: https://doi.org/10.1016/j.chemolab.2003.11.006
S. Katare, A. Bhan, J. M. Caruthers, W. N. Delgass, and V. Venkatasubramanian, “A hybrid genetic algorithm for efficient parameter estimation of large kinetic models,” Comput. Chem. Eng., vol. 28, no. 12, November 15 2004. [Online]. Available: https://doi.org/10.1016/j.compchemeng.2004.07.002
H. Lynggaard, A. Andreasen, C. Stegelmann, and P. Stoltze, “Analysis of simple kinetic models in heterogeneous catalysis,” Prog. Surf. Sci., vol. 77, no. 3-4, November 2004. [Online]. Available: https://doi.org/10.1016/j.progsurf.2004.09.001
C. Jiang and et al., “Synthesis of dimethyl carbonate from methanol and carbon dioxide in the presence of polyoxometalates under mild conditions,” Appl. Catal. A Gen., vol. 256, no. 1-2, December 30 2003. [Online]. Available: https://doi.org/10.1016/S0926-860X(03)00400-9
J. M. Nougués, M. D. Grau, and L. Puigjaner, “Parameter estimation with genetic algorithm in control of fed-batch reactors,” Chem. Eng. Process. Process. Intensif., vol. 41, no. 4, April 2002. [Online]. Available: https://doi.org/10.1016/S0255-2701(01)00146-5
S. D. Harris, L. Elliott, D. B. Ingham, M. Pourkashanian, and C. W. Wilson, “The optimisation of reaction rate parameters for chemical kinetic modelling of combustion using genetic algorithms,” Comput. Methods. Appl. Mech. Eng., vol. 190, no. 8-10, November 24 2000. [Online]. Available: https://doi.org/10.1016/S0045-7825(99)00466-1
K. Tomishige, Y. Ikeda, T. Sakaihori, and K. Fujimoto, “Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide,” J. Catal., vol. 192, no. 2, June 10 2000. [Online]. Available: https://doi.org/10.1006/jcat.2000.2854
A. F. Orrego and F. Bustamante, “Direct synthesis of dimethyl carbonate from CO2 and methanol in gas-phase,” M.S. thesis, Dept. Chem. Eng., Universidad de Antioquia, Medellin, Colombia, 2014.
S. A. Khromova and et al., “Anisole hydrodeoxygenation over Ni–Cu bimetallic catalysts: The effect of Ni/Cu ratio on selectivity,” Appl. Catal. A Gen., vol. 470, January 30 2014. [Online]. Available: https://doi.org/10.1016/j.apcata.2013.10.046
O. Arbelaez and et al., “Conversion of carbon dioxide and methanol into dimethyl carbonate using Cu-Ni supported on activated carbon. theoretical and in situ FTIR studies,” unpublished.
S. H. Zhong, J. W. Wang, X. F. Xiao, and H. S. Li, “Dimethyl carbonate synthesis from carbon dioxide and methanol over Ni- Cu/MoSiO(VSiO) catalysts,” Stud. Surf. Sci. Catal., vol. 130, 2000. [Online]. Available: https://doi.org/10.1016/S0167-2991(00)80423-1
C. Karakaya, R. Otterstätter, L. Maier, and O. Deutschmann, “Kinetics of the water-gas shift reaction over Rh/Al2O3 catalysts,” Appl. Catal. A Gen., vol. 470, January 30 2014. [Online]. Available: https://doi.org/10.1016/j.apcata.2013.10.030
G. Carotenuto, R. Tesser, M. D. Serio, and E. Santacesaria, “Kinetic study of ethanol dehydrogenation to ethyl acetate promoted by a copper/copper-chromite based catalyst,” Catal. Today, vol. 203, March 30 2013. [Online]. Available: https://doi.org/10.1016/j.cattod.2012.02.054
J. Zawadzki, B. Azambre, O. Heintz, A. Krztoń, and J. Weber, “IR study of the adsorption and decomposition of methanol on carbon surfaces and carbon-supported catalysts,” Carbon, vol. 38, no. 4, 2000. [Online]. Available: https://doi.org/10.1016/S0008-6223(99)00130-X
X. Yin and J. R. Moss, “Recent developments in the activation of carbon dioxide by metal complexes,” Coord Chem Rev., vol. 181, no. 1, January 1999. [Online]. Available: https://doi.org/10.1016/S0010-8545(98)00171-4
S. Y. Zhao, S. P. Wang, Y. J. Zhao, and X. B. Ma, “An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2,” Chinese Chem. Lett., vol. 28, no. 1, January 2017. [Online]. Available: https://doi.org/10.1016/j.cclet.2016.06.003
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.