Simulation of two alternatives for SO2 removal from wet cement kiln exhaust gases


  • Carlos Duque Universidad de Antioquia
  • Consuelo Montes Universidad de Antioquia
  • Felipe Bustamante Universidad de Antioquia
  • Alejandro Ortiz Cementos Argos S.A.


Aspen plus, CKD, limestone, radfrac, ratesep, SO2 removal process, simulation, sulfur dioxide


This work aimed at simulating two processes for capturing sulfur dioxide from exhaust gases of wet clinker processes. The goal is to present a guide to cement manufacturers when selecting the most appropriate technology for wet processes in order to comply with environmental regulations. The available commercial technologies chosen for desulfurization process were: wet limestone and wet Cement Kiln Dust (CKD) removal processes. A commercial simulator (Aspen Plus v.2006.5) was used. The absorption tower -considered the core of the process- was simulated with an Aspen RadFrac model combined with Aspen RateSep calculations to provide better and more accurate simulation results than a simulation with the traditional equilibrium approach. This combination also allows better estimates for equipment sizing. The convergence issues, both for the absorption of sulfur dioxide and the overall process, were solved using Aspen Plus tools.
= 24 veces | PDF (ESPAÑOL (ESPAÑA))
= 12 veces|


Download data is not yet available.


G. T. Joseph, D. S. Beachler. “Scrubber Systems Operation Review”. Lesson 9: Flue Gas Desulfurization (Acid Gas Removal) Systems. U.S. Environmental Protection Agency (EPA) APTI Course SI: 412C. 2da. ed. 1998. Available from: Accessed on April 17. 2008.

K. Schumacher, J. Sathaye. “India’s cement industry: Productivity, energy efficiency and carbon emissions. LBNL-41842.” Lawrence Berkley National Laboratory, USA. 2007. Available from: Accessed on March 20. 2008.

Ministerio de Ambiente, Vivienda y Desarrollo Territorial. República de Colombia. Resolución N.º 909 de junio 5 de 2008. pp. 15-17.

A. Gómez, N. Fueyo, A. Tomás. “Detailed modeling of a flue-gas desulphurization plant.” Comput. Chem. Eng. Vol. 31. 2007. pp. 1419-1431.

U.S. Environmental Protection Agency (EPA). Report to Congress 1993-Cement Kiln Dust Waste. Available from: Accessed on April 15. 2008.

L. P. Passamaquoddy Technology. Passamaquoddy Innovative Clean Coal Technology Program. Final Report. U.S. Department of Energy. Feb. 1994. pp. 1-112.

Aspen Plus. 2007(A). Aspen Plus version 2006.5. Aspen Technology Inc. Cambridge. MA. USA.

C. C. Chen, H. I. Britt, J. F. Boston, L. B. Evans. “Local Composition Model for Excess Gibbs Energy of Electrolyte Systems, Part I: Single Solvent, Single Completely Dissociated Electrolyte Systems”. AIChE J. Vol. 28. 1982. pp. 588-596.

O. Redlich, J. N. S. Kwong. “On the Thermodynamics of Solutions V. An Equation-of-state. Fugacities of Gaseous Solutions”. Chem. Rev. Vol. 44. 1979. pp. 223-244.

Aspen Properties. Aspen Physical Property System: Physical Property Methods. Electrolyte NRTL Activity Coefficient Model. Version number 2006.5. Aspen Technology Inc. Cambridge. M. A. USA. 2007.

Aspen Plus. Aspen RadFrac Module. offline help. Version 2006.5. Aspen Technology Inc. Cambridge. M. A. USA. 2007.

Aspen RateSep. Aspen RateSep Calculations. Online help. Complement of RadFrac module. Aspen Technology Inc. Cambridge. M. A. USA. 2007.

A. Kohl, R. Nielsen. Alkaline Earth Processes: Limestone/Lime Process. Gas Purification. Ed. Gulf Publishing Company. Oxford. UK. 1997. pp. 496-528.

H. Kister. Distillation Design. Ed. McGraw Hill Company. New York. 1992. pp. 278-279.



How to Cite

Duque, C., Montes, C., Bustamante, F., & Ortiz, A. (2013). Simulation of two alternatives for SO2 removal from wet cement kiln exhaust gases. Revista Facultad De Ingeniería Universidad De Antioquia, (56), 49–57. Retrieved from