Separation of carvone by batch distillation from the mixture obtained from limonene oxidation

Authors

DOI:

https://doi.org/10.17533/udea.redin.20210848

Keywords:

Essential oil, Limonene, Separation, Simulation

Abstract


Limonene is the main constituent of citrus oils whose oxidation produces a set of fine chemical compounds such as carvone, carveol, and limonene 1,2-epoxide. This contribution reports the results of the experimental evaluation and computational simulation of carvone separation by fractional distillation from the reaction mixture. Carvone was obtained from limonene oxidation over a perchlorinated iron phthalocyanine supported on modified silica catalyst (FePcCl16-NH2-SiO2) and t-butyl hydroperoxide (TBHP) as oxidant. Both experimental and simulation results support that fractional distillation (in batch and continuous) is a suitable technique for concentrating carvone. However, in the presence of water, the formation of immiscible L-L phases makes the experimental separation of carvone more difficult. Simulation results of the batch distillation incorporating the NRTL-RK thermodynamic model indicate that if water, acetone, and t-butanol are previously removed from the reaction mixture, carvone composition can be enriched in the reboiler from 4% up to 50%, or around 86.5% if the removal is in a third distillate cut under vacuum conditions.

|Abstract
= 90 veces | PDF
= 85 veces|

Downloads

Download data is not yet available.

Author Biographies

Jaime Andrés Becerra Chalá, Universidad de Antioquia

PhD, professor Chemical Engineering

Aída Luz Villa Holguín, Universidad de Antioquia

Professor PhD, Chemical Engineering

References

Y. Xiong and et al., “Removal of three kinds of phthalates from sweet orange oil by molecular distillation,” LWT - Food Science and Technology, vol. 53, no. 2, Oct. 2013. [Online]. Available: https://doi.org/10.1016/j.lwt.2013.04.012

J. A. Becerra and A. L. Villa, “Clean limonene transformations into added-value compounds of fine chemistry using heterogeneous catalysis,” in Advances in Chemistry Research Volume 47, J. C. Taylor, Ed. Hauppauge, NY: Nova science publishers, 2019.

C. Navarrete, J. Gil, D. Durango, and C. Garcia, “Extracción y caracterización del aceite esencial de manadarina obtenido de residuos agroindustriales,” DYNA, vol. 77, no. 162, 2010. [Online]. Available: https://revistas.unal.edu.co/index.php/dyna/article/view/15779

D. Pergentino, F. Ferreira, and R. Nóbrega, “Influence of the chirality of (r)-(-)- and (s)-(+)-carvone in the central nervous system: a comparative study,” Chirality, vol. 19, no. 4, May. 5, 2007. [Online]. Available: https://doi.org/10.1002/chir.20379

P. M. Rhodes and N. Winskill, “Microbiological process for the preparation of 1-carvone,” U.S. Patent 4,495,284, Jan. 22„ 1985. [Online]. Available: https://patents.google.com/patent/US4495284A/en

P. N. Davey, C. P. Newman, W. A. Thiam, and C. L. Tse, “Preparation of carvone,” Patent WO 00 58 253, Oct. 5„ 2000. [Online]. Available: https://patents.google.com/patent/WO2000058253A1/en

J. A. Becerra, L. M. González, and A. L. Villa, “A bio-inspired heterogeneous catalyst for the transformation of limonene from orange peel waste biomass into value-added products,” Catalysis Today, vol. 302, Mar. 15, 2018. [Online]. Available: https://doi.org/10.1016/j.cattod.2017.07.012

I. M. Mujtaba. (2004) Batch distillation: Design and operation. Imperial College Press. [Online]. Available: https://tinyurl.com/yfpmotfq

P. C. Wankat. (2012) Separation process engineering: Includes mass transfer analysis, third edition. Prentice Hall. [Online]. Available: http://repository.um-palembang.ac.id/id/eprint/9143/1/separation-process-engineeringbook%20%28%20PDFDrive.com%20%29.pdf

E. L. Foletto and et al., “Operation parameters of a small scale batch distillation column for hydrous ethanol fuel (hef) production,” Ingeniería e Investigación, vol. 35, no. 1, Jan. 2015. [Online]. Available: http://dx.doi.org/10.15446/ing.investig.v35n1.46969

T. Fang, M. Goto, M. Sasaki, and T. Hirose, “Combination of supercritical co2 and vacuum distillation for the fractionation of bergamot oil,” Journal of Agricultural and Food Chemistry, vol. 52, no. 16, Jul. 7, 2004. [Online]. Available: https://pubs.acs.org/doi/abs/10.1021/jf049895f

R. N. Almeida, R. d. P. Soares, and E. Cassel, “Fractionation process of essential oils by batch distillation,” Brazilian Journal of Chemical Engineering, vol. 35, no. 3, 2018. [Online]. Available: https://doi.org/10.1590/0104-6632.20180353s20170216

S. C. Beneti and et al., “Fractionation of citronella (cymbopogon winterianus) essential oil and concentrated orange oil phase by batch vacuum distillation,” Journal of Food Engineering, vol. 102, no. 4, Feb. 2011. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0260877410004632

R. Barrera, A. L. Villa, and C. Montes, “Modeling and simulation of a batch distillation column for recovering limonene epoxide,” Revista EIA, vol. 9, no. 18, 2012. [Online]. Available: https://revistas.eia.edu.co/index.php/reveia/article/view/265

I. D. Wilson, E. R. Adlard, M. Cooke, and C. F. Poole. (2000) Encyclopedia of separation science. Elsevier Science Ltd. [Online]. Available: https://books.google.com.co/books?id=hMBTAAAAMAAJ

X. Li and K. Tamura, “(ternary liquid + liquid) equilibria for (water + acetone + α-pinene, or β-pinene, or limonene) mixtures,” The Journal of Chemical Thermodynamics, vol. 42, no. 11, Nov. 2010. [Online]. Available: https://doi.org/10.1016/j.jct.2010.06.004

C. A. Sánchez, G. Rodríguez, and M. A. Gómez, “Herramientas geométricas para el diseño básico de columnas de destilación con mezclas azeotrópicas heterogéneas ternarias. i. cáculo del reflujo mínimo,” Revista EIA, vol. 9, no. 18, Sep. 27, 2013. [Online]. Available:

https://revistapostgrado.eia.edu.co/index.php/reveia/article/view/266

C. A. Sánchez, L. Estupiñán, and M. A. Salazar, “Herramientas para la caracterización termodinámica de sistemas ternarios en destilación,” Revista EIA, no. 13, Nov. 25, 2013. [Online]. Available: https://repository.eia.edu.co/handle/11190/184

A. Farajnezhad and et al., “Correlation of interaction parameters in wilson, nrtl and uniquac models using theoretical methods,” Fluid Phase Equilibria, vol. 417, Jun. 15, 2016. [Online]. Available: https://doi.org/10.1016/j.fluid.2016.02.041

D. Gonçalves and et al., “Fractionation of orange essential oil using liquid–liquid extraction: Equilibrium data for model and real systems at 298.2 k,” Fluid Phase Equilibria, vol. 399, Aug. 15, 2015. [Online]. Available: https://doi.org/10.1016/j.fluid.2015.04.022

C. M. Oliveira and et al., “Liquid–liquid equilibrium data for the system limonene + carvone + ethanol + water at 298.2 k,” Fluid Phase Equilibria, vol. 360, Dec. 25, 2013. [Online]. Available: https://doi.org/10.1016/j.fluid.2013.09.057

L. Sun and et al., “Measurement and correlation of (vapor + liquid) equilibrium data for α-pinene + p-cymene + (S)-(−)-limonene ternary system at atmospheric pressure,” The Journal of Chemical Thermodynamics, vol. 58, Mar. 2013. [Online]. Available: https://doi.org/10.1016/j.jct.2012.10.017

I. Batiu, “Vapor–liquid equilibria in the binary system (−)-beta-pinene + (+)-fenchone: Analysis in terms of group contributions models of some binary systems containing terpenoids,” Fluid Phase Equilibria, vol. 227, no. 1, Jan. 1, 2005. [Online]. Available: https://doi.org/10.1016/j.fluid.2004.10.032

J. D. Seader, E. J. Henley, and D. K. Roper. (2011) Separation process principles, chemical and biochemical operations, third edition. John Wiley & Sons, Inc. [Online]. Available: https://www.academia.edu/37158509/_CBE3233_Separation_Process_Principles_3e?from=cover_page

Downloads

Published

2021-08-24

How to Cite

Becerra Chalá, J. A., & Villa Holguín, A. L. (2021). Separation of carvone by batch distillation from the mixture obtained from limonene oxidation. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20210848

Issue

Section

Articles

Most read articles by the same author(s)