Fabrication of chitosan/bioactive glass composite scaffolds for medical applications


  • Diana Marcela Escobar-Sierra Universidad de Antioquia https://orcid.org/0000-0002-6013-7039
  • Johnnatan Stiven Posada-Carvajal Universidad de Antioquia
  • Diego León Atehortúa-Soto Universidad de Antioquia




Bioactive glass, chitosan, scaffolds, tissue engineering


In the current study, a bioactive glass (BG) powder was prepared by sol-gel technique in the system SiO2  –CaO–P2O5, and both, bioactive glass precursors (BGi) and the powder of bioactive glass (BGp) were used to produce crosslinked chitosan composite scaffolds (CH/BGi and CH/BGp), which were produced by lyophilization. The bioactive glass was analyzed to know its composition, crystallinity and morphology through Raman Spectroscopy (RS), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. In addition, compression strength tests were carried out on the resulting composite scaffolds. Experimental results show that the fabricated CH/BG scaffolds might be a promising composite biomaterial for bone tissue engineering, due to the XRD results, showing a pollutant-free biomaterial, and, SEM shows bioactive glass particles homogenously distributed within the chitosan matrix which suggested that the developed composite scaffolds possess the prerequisites for tissue engineering and these can be used for tissue engineering applications.

= 74 veces | PDF
= 73 veces|


Download data is not yet available.

Author Biographies

Diana Marcela Escobar-Sierra, Universidad de Antioquia

Grupo de Investigación en Biomateriales, Facultad de Ingeniería

Johnnatan Stiven Posada-Carvajal, Universidad de Antioquia

Grupo de Investigación en Biomateriales, Facultad de Ingeniería

Diego León Atehortúa-Soto, Universidad de Antioquia

Grupo de Investigación en Biomateriales, Facultad de Ingeniería


C. Estrada, A. Paz and L. López, “Ingeniería de tejido óseo: Consideraciones básicas”, Revista EIA- Escuela de Ingeniería de Antioquia, vol. 5, pp. 93-100, 2006.

D. Balanta, “Utilización de quitosano procedente del micelio de Aspergillus Níger y su aplicación en regeneración de tejidos”, M.S. thesis, Universidad del Valle, Cali, Colombia, 2014.

J. Jones, “Review of bioactive glass: From Hench to hybrids”, Acta Biomater., vol. 9, no. 1, pp. 4457- 4486, 2013.

M. Mozafari and F. Moztarzadeh, “Synthesis, characterization and biocompatibility evaluation of sol-gel derived bioactive glass scaffolds prepared by freeze casting method”, Ceramics International, vol. 40, no. 4, pp. 5349-5355, 2014.

L. Ramos, T. Montenegro and N. Pereira, “Perspectivas para o uso da quitosana na agricultura”, Revista Iberoamericana de Polímeros, vol. 12, no. 4, pp. 195-215, 2011.

M. Alizadeh, F. Abbasi, A. Khoshfetrat and H. Ghaleh, “Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method”, Materials Science and Engineering C, vol. 33, no. 7, pp. 3958-3967, 2013.

H. Shibata, Y. Heo and S. Takeuchi, “Simple Molding Fabrication for Polyacrylamide Hydrogel”, in IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), Cancun, Mexico, 2011, pp. 885-888.

J. Schwartz et al., “Topical treatment of L. major infected BALB/c mice with a novel diselenide chitosan hydrogel formulation”, European Journal of Pharmaceutical Sciences, vol. 62, pp. 309-316, 2014.

A. Paulino, J. Simionato, J. Garcia and J. Nozaki, “Characterization of chitosan and chitin produced from silkworm chrysalides”, Carbohydrate Polymers, vol. 64, pp. 98-103, 2006.

M. Mozafari, M. Rabiee, M. Azami and S. Maleknia, “Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds”, Applied Surface Science, vol. 257, no. 5, pp. 1740-1749, 2010.

F. Berthiaume, T. Maguire and M. Yarmush, “Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges”, Annual Review of Chemical and Biomolecular Engineering, vol. 2, pp. 403-430, 2011.

M. Rahaman et al., “Bioactive glass in tissue engineering”, Acta Biomater., vol 7, no. 6, pp. 2355– 2373, 2011.

B. Dorj, J. Park and H. Kim, “Robocasting chitosan/ nanobioactive glass dual-pore structured scaffolds for bone engineering”, Materials Letters, vol. 73, pp. 119- 122, 2012.

P. Hunger, A. Donius and U. Wegst, “Structure- property-processing correlations in freeze-cast composite Scaffolds”, Acta Biomater., vol. 9, no. 5, pp. 6338-6348, 2013.

M. Peter et al., “Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications”, Carbohydrate Polymers, vol. 79, no. 2, pp. 284-289, 2010.

C. Peniche, Y. Solís, N. Davidenko and R. García, “Chitosan/hydroxyapatite-based composites”, Biotecnol Apl., vol. 27, pp. 202-210, 2010.

C. Milea, C. Bogatu and A. Duta, “The influence of parameters in silica sol-gel process”, Bulletin of the Transilvania University of Braşov, Series I: Engineering Sciences, vol. 4, no. 1, pp. 59-66, 2011.

A. Balamurugan et al., “Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications”, Materials Letters, vol. 60, no. 29-30, pp. 3752-3757, 2006.

I. Notingher, A. Boccaccini, J. Jones, V. Maquet and L. Hench, “Application of Raman microspectroscopy to the characterisation of bioactive materials”, Materials Characterization, vol. 49, no. 3, pp. 255-260, 2002.

J. Qian, Y. Kang, Z. Wei and W. Zhang, “Fabrication and characterization of biomorphic 45S5 bioglass scaffold from sugarcane”, Materials Science and Engineering: C, vol. 29, no. 4, pp. 1361-1364, 2009.

G. Luz and J. Mano, “Preparation and characterization of bioactive glass nanoparticles prepared by sol-gel for biomedical applications”, Nanotechnology, vol. 22, pp. 1-11, 2011.

D. Bellucci, G. Bolelli, V. Cannillo, A. Cattini and A. Sola, “In situ Raman spectroscopy investigation of bioactive glass reactivity: Simulated body fluid solution vs TRIS- buffered solution”, Materials characterization, vol. 62, no. 10, pp. 1021-1028, 2011.

L. Marsich, L. Moimas, V. Sergo and C. Schmid, “Raman spectroscopic study of bioactive silica-based glasses: The role of the alkali/alkali earth ratio on the Non- Bridging Oxygen/Bridging Oxygen (NBO/BO) ratio”, Spectroscopy, vol. 23, no. 3-4, pp. 227-232, 2009.

T. Wu et al., “A new bone repair scaffold combined with chitosan/ hydroxyapatite and sustained releasing icariin”, Chinese Science Bulletin, vol. 54, no. 17, pp. 2953-2961, 2009.

K. Zhang, D. Peschel, J. Helm, T. Groth and S. Fischer, “FT Raman investigation of novel chitosan sulfates exhibiting osteogenic capacity, Carbohydrate Polymers, vol. 83, no. 1, pp. 60-65, 2011.

J. Oliveira et al., “Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells”, Biomaterials, vol. 27, no. 36, pp. 6123-6137, 2006.

S. Teng, E. Lee, P. Wang, S. Jun, C. Han and H. Kim, “Functionally Gradient Chitosan/Hydroxyapatite Composite Scaffolds for Controlled Drug Release”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 90B, no. 1, pp. 275-282, 2009.

K. Im et al., “Organic-Inorganic hybrids of hydroxyapatite with chitosan”, Key Engineering Materials, vol. 284-286, pp. 729-732, 2005.

H. Jin et al., “In-situ formation of the hydroxyapatite/ chitosan-alginate composite scaffolds”, Materials Letters, vol. 62, no. 10-11, pp. 1630-1633, 2008.

L. Kong et al., “Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds”, Journal of Biomedical Materials Research Part A, vol. 75, no. 2, pp. 275-282, 2005.

J. Weng and M. Wang, “Producing chitin scaffolds with controlled pore size and interconnectivity for tissue engineering”, Journal of Materials Science Letters, vol. 20, no. 15, pp. 1401-1403, 2001.




How to Cite

Escobar-Sierra, D. M., Posada-Carvajal, J. S., & Atehortúa-Soto, D. L. (2016). Fabrication of chitosan/bioactive glass composite scaffolds for medical applications. Revista Facultad De Ingeniería Universidad De Antioquia, (80), 38–47. https://doi.org/10.17533/udea.redin.n80a05