Chitosan/hydroxyapatite scaffolds for tissue engineering manufacturing method effect comparison

Authors

  • Diana Marcela Escobar-Sierra Universidad de Antioquia https://orcid.org/0000-0002-6013-7039
  • Johan Martins-Martins University of Franche-Comté
  • Claudia Patricia Ossa-Orozco Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.n75a04

Keywords:

Bone, chitosan, hydroxyapatite in situ, hydroxyapatite in powder, scaffolds chitosan/ hydroxyapatite, tissue engineering

Abstract


The regeneration of bone is one of the main challenges of modern medicine because many diseases including trauma and tumor can cause bone defects. Tissue engineering (TE) is a promising approach to cure these bone diseases since it allows the reconstruction of tissue by colonization and proliferation of a patient is healthy cells is in an artificial extracellular matrix (scaffolds). The aim of this project was to prepare chitosan/hydroxyapatite CH/HA scaffolds, using various ratios and two different methods: powder hydroxyapatite (commercial) and in situ hydroxyapatite, and then compare their properties. The morphology, chemical composition, and mechanical properties were evaluated by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and compression tests. The scaffolds obtained showed an interconnected porous structure. Scaffolds with better applications in tissue engineering are the scaffolds with chitosan and hydroxyapatite in situ protocol, due to their better morphology; they allow the cell growth. These scaffolds meet the requirements of tissue engineering.

 

 

|Abstract
= 228 veces | PDF
= 194 veces|

Downloads

Download data is not yet available.

Author Biographies

Diana Marcela Escobar-Sierra, Universidad de Antioquia

Docente Programa de Bioingeniería, Facultad de Ingeniería

Investigadora Grupo de Investigación en Biomateriales (BIOMAT),

Johan Martins-Martins, University of Franche-Comté

Franche-Comté Higher Institute of Engineering

Claudia Patricia Ossa-Orozco, Universidad de Antioquia

Profesora del Programa de Bioingeniería, Facultad de Ingeniería

Investigadora del Grupo de Investigación en Biomateriales (BIOMAT)

References

S. Mistry, A. Mikos. “Tissue engineering strategies for bone regeneration”. Adv Biochem Engin/Biotechnol. Vol. 94. 2005. pp. 1-22.

P. Costantino, C. Friedman. “Synthetic bone graft substitutes”. Otolaryngol Clin North Am. Vol. 27. 1994. pp. 1037-1074.

S. Jun, E. Lee, T. Jang, H. Kim, J. Jang, Y. Koh. “Bone morphogenic protein-2 (BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering”. J Mater Sci Mater Med. Vol. 24. 2013. pp. 773-782.

F. Zhao, Y. Yin, W. Lu, J. Chiyan, W. Zhang, J. Zhang, M. Zhang, K. Yao. “Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds”. Biomaterials. Vol. 23. 2002. pp. 3227-3234.

T. Keane, S. Badylak. “Biomaterials for tissue engineering applications”. Seminars in Pediatric Surgery. Vol. 23. 2014. pp. 112-118.

A. Shrivats, M. McDermott, J. Hollinger. “Bone tissue engineering: state of the union”. Drug Discovery Today. Vol. 19. 2014. pp. 781-786.

M. Vallet. “Ceramics for medical applications”. J. Chem. Soc., Dalton Trans. Vol. 1. 2001. pp. 97-108.

S. Teixeira, M. Rodriguez, P. Pena, A. Aza, S. Aza, M. Ferraz, F. Monteiro. “Physical characterization of hydroxyapatite porous scaffolds for tissue engineering”. Mater Sci Eng C. Vol. 29. 2009. pp. 1510-1514.

B. Chesnutt, A. Viano, Y. Yuan, Y. Yang, T. Guda, M. Appleford, J. Ong, W. Haggard, J. Bumgardner. “Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration”. J Biomed Mater Res Part A. Vol. 88. 2009. pp. 491-502.

S. Danilchenko, O. Kalinkevich, M. Pogorelov, A. Kalinkevich, A. Sklyar, T. Kalinichenko, et al. “Chitosan–hydroxyapatite composite biomaterials made by a one step co-precipitation method: preparation, characterization and in vivo tests”. J Biol Phys Chem. Vol. 9. 2009. pp. 119-126.

L. Kong, Y. Gao, W. Cao, Y. Gong, N. Zhao, X. Zhang. “Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds”. J Biomed Mater Res A. Vol. 75. 2005. pp. 275-282.

Z. Li, L. Yubao, Y. Aiping, P. Xuelin, W. Xuejiang, Z. Xiang. “Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials”. J Mater Sci Mater Med. Vol. 16. 2005. pp. 213-219.

C. Peniche, Y. Solís, N. Davidenko, R. García. “Chitosan/hydroxyapatite-based composites”. Biotecnol Apl. Vol. 27. 2010. pp. 202-210.

D. Escobar, C. Ossa, M. Quintana, W. Ospina. “Optimización de un protocolo de extracción de quitina y quitosano desde caparazones de crustáceos”. Scientia et Technica. Vol. 18. 2013. pp. 260-266.

M. Yen, J. Yang, J. Mau. “Physicochemical characterization of chitin and chitosan from crab shells”. Carbohydr Polym. Vol. 75. 2009. pp. 15-21.

J. Oliveira, M. Rodrigues, S. Silva, P. Malafaya, M. Gomes, C. Viegas, I. Dias, J. Azevedo, J. Mano, R. Reis. “Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells”. Biomaterials. Vol. 27. 2006. pp. 6123-6137.

J. Chen, K. Nan, S. Yin, Y. Wang, T. Wu, Q. Zhang . “Characterization and biocompatibility of nanohybrid scaffold prepared via in situ crystallization of hydroxyapatite in chitosan matrix. Colloids Surf B Biointerfaces. Vol. 81. 2010. pp. 640-647.

J. Klawitter, S. Hulbert. “Application of porous ceramics for the attachment of load bearing internal orthopaedic applications”. J Biomed Mater Res Symp. Vol. 5. 1971. pp. 161-229.

T. Wu, K. Nan, J. Chen, D. Jin, S. Jiang, P. Zhao, J. Xu, H. Du, X. Zhang, J. Li, G. Pei. “A new bone repair scaffold combined with chitosan/ hydroxyapatite and sustained releasing icariin”. Chinese Sci Bull. Vol. 54. 2009. pp. 2953-2961.

K. Zhang, D. Peschel, J. Helm, T. Groth, S. Fischer. “FT Raman investigation of novel chitosan sulfates exhibiting osteogenic capacity”. Carbohydr Polym. Vol. 83. 2011. pp. 60-65.

S. Teng, E. Lee, P. Wang, S. Jun, C. Han, H. Kim. “Functionally Gradient Chitosan/Hydroxyapatite Composite Scaffolds for Controlled Drug Release”. J Biomed Mater Res Part B: Appl Biomater. Vol. 90. 2009. pp. 275-282.

K. Im, J. Park, K. Kim, K. Kim, S. Choi, C. Kim, Y. Lee. “Organic-Inorganic hybrids of hydroxyapatite with chitosan”. Key Eng. Mater. Vol. 284-286. 2005. pp. 729-732.

H. Jin, C. Lee, W. Lee, J. Lee, H. Park, S. Yoon. “In-situ formation of the hydroxyapatite/chitosan-alginate composite scaffolds”. Mater Lett. Vol. 62. 2008. pp. 1630-1633.

I. Cukrowski, L. Popović, W. Barnard, S. Paul, P. Rooyen, D. Liles. “Modeling and spectroscopic studies of bisphosphonate–bone interactions. The Raman, NMR and crystallographic investigations of Ca-HEDP complexes”. Bone. Vol. 41. 2007. pp. 668-678.

C. Tchanque, B. Gong, B. Poushanchi, A. Donneys, D. Sarhaddi, K. Gallagher, S. Deshpande, S. Goldstein, M. Morris, S. Buchman. “Raman spectroscopy demonstrates Amifostine induced preservation of bone mineralization patterns in the irradiated murine mandible”. Bone. Vol. 52. 2013. pp. 712-717.

L. Jiang, Y. Li, X. Wang, L. Zhang, J. Wen, M. Gong. “Preparation and properties of nano hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold”. Carbohydr Polym. Vol. 74. 2008. pp. 680-684.

S. Teng, E. Lee, B. Yoon, D. Shin, H. Kim, J. Oh. “Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration”. J Biomed Mater Res Part A. Vol. 88. 2009. pp. 569-580.

J. Jančář, A. Slovíková, E. Amler, P. Krupa, H. Kecová, L. Plánka, P. Gál, A. Nečas. “Mechanical response of porous scaffolds for cartilage engineering”. Physiol. Res. Vol. 56. 2007. pp. 17-25.

Downloads

Published

2015-05-15

How to Cite

Escobar-Sierra, D. M., Martins-Martins, J., & Ossa-Orozco, C. P. (2015). Chitosan/hydroxyapatite scaffolds for tissue engineering manufacturing method effect comparison. Revista Facultad De Ingeniería Universidad De Antioquia, (75), 24–35. https://doi.org/10.17533/udea.redin.n75a04