A comparison of linear and nonlinear model performance of shia_landslide: a forecasting model for rainfall-induced landslides

Authors

DOI:

https://doi.org/10.17533/udea.redin.n80a09

Keywords:

SHIA_Landslide, linear model, nor-linear model, landslides, rainfall

Abstract


Landslides are one of the main causes of global human and economic losses. Vulnerability to landslide hazards has increased due to expanded land urbanisation in areas with high landslide susceptibility. Therefore, landslide hazard assessment and the capacity to predict such phenomena have been a topic of great interest within the scientific community, with the goal of implementing early warning systems. SHIA_Landslide (Open and Distributed Hydrological Simulation & Landslides) is a conceptual and physically based model to analyse shallow landslide processes by incorporating a comprehensive distributed hydrological tank model that includes water storage in the soil coupled with a classical analysis of infinite-slope stability under saturated conditions. This paper compares the forecasting performance of linear and nonlinear SHIA_Landslide model. The results obtained for the La Arenosa Catchment during the September 21, 1990 rainstorm shows that the nonlinear SHIA_Landslide replicate more accurately landslides triggered by rainfall features.

|Abstract
= 115 veces | PDF
= 98 veces|

Downloads

Download data is not yet available.

Author Biographies

Edier Vicente Aristizabal-Giraldo, Universidad Nacional de Colombia

Departamento de Geociencias y Medio Ambiente, Facultad de Minas

Jaime Ignacio Velez-Upegui, Universidad Nacional de Colombia

Departamento de Geociencias y Medio Ambiente, Facultad de Minas

Hernan Eduardo Martinez-Carvajal, University of Brasilia

Department of Civil & Environmental Enginnering

References

I. Alcántara, “Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries”, Geomorphology, vol. 47, no. 2-4, pp. 107-124, 2002.

E. Harp, M. Reid, J. McKenna and J.Michael, “Mapping of hazard from rainfall-triggered landslides in developing countries: examples from Honduras and Micronesia”, Engineering Geology, vol. 104, no. 3-4, pp. 295-311, 2009.

A. Scheidegger, “Tectonic predesign of mass movements, with examples from the Chinese Himalaya”, Geomorphology, vol. 26, no. 1-3, pp. 37-46, 1998.

United Nations, “World Urbanization Prospects: The 2005 Revision”, United Nations (Department of Economic and Social Affairs, Population Division), New York, USA, Final Report, Oct. 2006.

United Nations Population Fund (UNFPA), State of world population 2007, Unleashing the Potential of Urban Growth. New York, USA: UNFPA, 2007.

G. Crosta and P. Frattini, “Distributed modeling of shallow landslides triggered by intense rainfall”, Natural Hazard and Earth System Sciences, vol. 3, no. 1-2, pp. 81-93, 2003.

D. Brunsden, “Geomorphological roulette for engineers and planners: some insights into an old game”, Quart. J. of Engng. Geol and Hydro., vol. 35, no. 2, pp. 101-142, 2002.

J. Hutchinson and R. Bhandari, “Undrained loading, a fundamental mechanism of mudflows and other mass movements”, Géotechnique, vol. 21, no. 4, pp. 353-358, 1971.

A. Scott and N. Sitar, “Analysis of rainfall-induced debris flows”, Journal of Geotechnical Engineering, vol. 121, no. 7, pp. 544-552, 1995.

W. Take, M. Bolton, P. Wong and F. Yeung, “Evaluation of landslide triggering mechanisms in model fill slopes”, Landslides, vol. 1, no. 3, pp. 173-184, 2004.

K. Sassa and G. Wang, “Mechanism of landslide- triggered debris flows: Liquefaction phenomena due to the undrained loading of torrent deposits”, in Debris- flow Hazards and Related Phenomena, M. Jakob and O. Hungr (eds). Chichester, UK: Springer Praxis Books, 2005, pp. 81-104.

A. Askarinejad et al., “Physical modelling of rainfall induced landslides under controlled climatic conditions”, in Eurofuge, Delft, Netherlands, 2012.

H. Rahardjo, T. Lim, M. Chang and D. Fredlund, “Shear- strength characteristics of a residual soil”, Canadian Geotechnical Journal, vol. 32, no. 1, pp. 60-77, 1995.

G. Wang and K. Sassa, “Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content”, Engineering Geology, vol. 69, no. 1-2, pp. 109-125, 2003.

B. Collins and D. Znidarcic, “Stability analyses of rainfall induced landslides”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 130, no. 4, pp. 362- 372, 2004.

W. Wu and R. Sidle, “A distributed slope stability model for steep forested basins”, Water Resources Research, vol. 31, no. 8, pp. 2097-2110, 1995.

M. Borga, G. Fontana, D. Daros and L. Marchi, “Shallow landslide hazard assessment using a physically based model and digital elevation data”, Environmental Geology, vol. 35, no. 2, pp. 81-88, 1998.

G. Crosta, “Regionalization of rainfall thresholds: an aid to landslide hazard evaluation”, Environmental Geology, vol. 35, no. 2, pp. 131-145, 1998.

A. Burton and J. Bathurst, “Physically based modeling of shallow landslide sediment yield at a catchment scale”, Environmental Geology, vol. 35, no. 2, pp. 89-99, 1998.

J. Grifiths, A. Collison and S. Wade, “The validity of using a simplified distributed hydrological model for estimation of landslide probability under a climate change scenario”, in 4th International Conference on GeoComputation, Virginia, USA, 1999.

P. Frattini, B. Crosta, N. Fusi, and P. Negro, “Shallow landslides in pyroclastic soils: a distributed modeling approach for hazard assessment”, Engineering Geology, vol. 73, no. 3-4, pp. 277-295, 2004.

G. Bussi, F. Francés, J. Montoya and P. Julien, “Distributed sediment yield modelling: Importance of initial sediment conditions”, Environmental Modelling & Software, vol. 58, pp. 58-70, 2014.

D. Montgomery and W. Dietrich, “A physically based model for the topographic control on shallow landsliding”, Water Resource Research, vol. 30, no. 4, pp. 1153-1171, 1994.

R. Iverson, “Landslide triggering by rain infiltration”, Water Resources Research, vol. 36, no. 7, pp. 1897-1910, 2000.

P. Troch, E. Loon and A. Hilberts, “Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow”, Advances in Water Resources, vol. 25, no. 6, pp. 637-649, 2002.

C. Paniconi, P. Troch, E. Loon and A. Hilberts, “Hillslope- storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 2. Intercomparison with a three-dimensional Richards equation model”, Water Resource Research, vol. 39, no. 11, pp. 1317-1329, 2003.

A. Rezzoug, A. Schumann, P. Chifflard and H. Zepp, “Field measurements of soil moisture dynamics and numerical simulation using the kinematic wave approximation”, Advances in Water resources, vol. 28, no. 9, pp. 917-926, 2005.

R. Pack, D. Tarboton and C. Goodwin, “Terrain Stability Mapping with SINMAP, technical description and users guide for version 1.00”, Terratech Consulting Ltd, Salmon Arm, Canada, Rep. 4114-0, 1998.

C. Hammond, D. Hall, S. Miller and P. Swetik, “Level I Stability Analysis (LISA) Documentation for Version 2.0”, U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, USA, General Tech. Rep. INT-285, 1992.

A. Dhakal and R. Sidle, “Distributed simulations of landslides for different rainfall conditions”, Hydrological Processes, vol. 18, no. 4, pp. 757-776, 2004.

M. Anderson and D. Lloyd, “Using a Combined Slope Hydrology-stability Model to Develop Cut Slope Design Charts”, Proc. Inst. Civ. Engineers, vol. 91, no. 4, pp. 705- 718, 1991.

R. Baum, W. Savage and W. Godt, “TRIGRS-A Fortran program for transient rainfall infiltration and grid- based regional slope-stability analysis, version 2.0”, U.S. Department of the Interior, U.S. Geological Survey, Denver, USA, Open-File Rep. 2008-1159, 2008.

G. Rossi, F. Catani, L. Leoni, S. Segoni and V. Tofani, “HIRESSS: a physically based slope stability simulator for HPC applications”, Nat. Hazards Earth Syst. Sci., vol. 13, pp. 151-166, 2013.

S. Simoni, F. Zanotti, G. Bertoldi and R. Rigon, “Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop- FS”, Hydrological Processes, vol. 22, no. 4, pp. 532- 545, 2008.

E. Arnone, L. Noto, C. Lepore and R. Bras, “Physically- based and distributed approach to analyze rainfall-triggered landslides at watershed scale”, Geomorphology, vol. 133, no. 3-4, pp. 121-131, 2011.

V. Ivanov, E. Vivoni, R. Bras and D. Entekhabi, “Catchment hydrologic response with a fully distributed triangulated irregular network model”, Water Resources Research, vol. 40, no. 11, 2004.

E. Aristizábal, J. Vélez, H. Martínez and M. Jaboyedoff, “SHIA_Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins”, Landslides, vol. 13, no. 3, pp. 497-517, 2016.

J. Vélez, “Desarrollo de un modelo hidrológico conceptual y distribuido orientado a la simulación de las crecidas”, Ph.D. dissertation, Universidad Politécnica de Valencia, Valencia, Spain, 2001.

J. Vélez, F. Francés and J. Vélez, “No linealidad del flujo en los cauces de la red de drenaje y sus implicaciones en la modelación hidrológica”, in XX Latin American Congress of Hydraulics, La Habana, Cuba, 2002.

J. Vélez and F. Francés, “Calibración automática de las condiciones iniciales de humedad para mejorar la predicción de eventos de crecida”, Avances en Recursos Hidráulicos, no. 18, pp. 25-36, 2008.

J. Graham, “Methods of Stability Analysis”, in Slope Instability, D. Brunsden and D. Prior (eds). New York, USA: John Wiley and Sons, pp. 171-215, 1984.

J. Montoya and F. Francés, Modelo conceptual de producción, transporte y depósito de sedimentos. Modelando los ciclos hidrológico y sedimentológico a escala de cuenca. Publicia, 2013.

A. Parsons, A. Abrahams and J. Wainwright, “On determining resistance to interrill overland flow”, Water Resources Research, vol. 30, no. 12, pp. 3515- 3521, 1994.

J. Kubota and M. Sivapalan, “Towards a catchment- scale model of subsurface runoff generation based on synthesis of small-scale process-based modeling and field studies”, Hydrological Processes, vol. 9, no. 5-6, pp. 541-554, 1995.

L. Leopold and T. Maddock, “The Hydraulic geometry of stream channels and some physiographic implications”, U.S. Department of the Interior, U.S. Geological Survey, Washington, D.C., USA, Geological Survey Professional Paper 252, 1953.

Instituto Geográfico Agustín Codazzi (IGAC), Estudio general de suelos y zonificación de tierras del departamento de Antioquia. Bogotá, Colombia: IGAC, 2007.

R. Mejía and M. Velásquez, “Procesos y depósitos asociados al aguacero de septiembre 21 de 1990 en el Área de San Carlos (Antioquia)”, Undergaduate thesis, Universidad Nacional de Colombia, Medellín, Colombia, 1991.

INTEGRAL S.A. “Informe sobre daños en la central de calderas por la avalancha ocurrida en la quebrada La Arenosa el 21 de septiembre de 1990 y su reparación”, Interconexión eléctrica S.A. (ISA), Medellín, Colombia, Rep., 1990.

M. Hermelin, O. Mejía and E. Velásquez, “Erosional and depositional features produced by a convulsive event, San Carlos, Colombia, September 21, 1990”, Bulletin of the International Association of Engineering Geology, vol. 45, no. 1, pp. 89-95, 1992.

M. Ostrowski, “Linearity of hydrological models and related uncertainty”, in ESF LESC Exploratory Workshop, Bologna, Italy, 2003, pp 1-10.

K. Beven, “How far can we go in distributed hydrological modelling?”, Hydrology and Earth System Sciences, vol. 5, no. 1, pp.1-12, 2001.

Downloads

Published

2016-09-15

How to Cite

Aristizabal-Giraldo, E. V., Velez-Upegui, J. I., & Martinez-Carvajal, H. E. (2016). A comparison of linear and nonlinear model performance of shia_landslide: a forecasting model for rainfall-induced landslides. Revista Facultad De Ingeniería Universidad De Antioquia, (80), 74–88. https://doi.org/10.17533/udea.redin.n80a09

Most read articles by the same author(s)