Comparación del desempeño de modelo shia_landslide lineal y no-lineal: un modelo para el pronóstico de deslizamientos detonados por lluvias
DOI:
https://doi.org/10.17533/udea.redin.n80a09Palabras clave:
SHIA_Landslide, modelo lineal, modelo no lineal, deslizamientos, lluviaResumen
Los deslizamientos son una de las principales causas de pérdidas humanas y económicas alrededor del mundo. La vulnerabilidad a la amenaza por deslizamientos se ha incrementado debido a la ocupación de áreas con alta susceptibilidad a deslizamientos. Por lo tanto, la evaluación de la amenaza y la capacidad de predecir estos fenómenos ha sido un tema de gran interés en la comunidad científica, con el objetivo de implementar sistemas de alerta temprana. SHIA_Landslide (Simulación HIdrológica Abierta y distribuida para deslizamientos detonados por lluvia) es un modelo conceptual y de base física para analizar los procesos que dan lugar a deslizamientos superficiales mediante la incorporación de un modelo hidrológico distribuido de tanques completo que incluye el almacenamiento de agua en el suelo, junto con un análisis clásico de estabilidad de talud infinito en condiciones saturadas. En este trabajo se compara el desempeño del modelo SHIA_Landslide lineal y no lineal. Los resultados obtenidos para la cuenca de La Arenosa durante el evento del 21 de septiembre de 1990 señalan que el modelo SHIA_Landslide no lineal presenta con mayor precisión las características asociadas a los deslizamientos detonados por lluvias.
Descargas
Citas
I. Alcántara, “Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries”, Geomorphology, vol. 47, no. 2-4, pp. 107-124, 2002.
E. Harp, M. Reid, J. McKenna and J.Michael, “Mapping of hazard from rainfall-triggered landslides in developing countries: examples from Honduras and Micronesia”, Engineering Geology, vol. 104, no. 3-4, pp. 295-311, 2009.
A. Scheidegger, “Tectonic predesign of mass movements, with examples from the Chinese Himalaya”, Geomorphology, vol. 26, no. 1-3, pp. 37-46, 1998.
United Nations, “World Urbanization Prospects: The 2005 Revision”, United Nations (Department of Economic and Social Affairs, Population Division), New York, USA, Final Report, Oct. 2006.
United Nations Population Fund (UNFPA), State of world population 2007, Unleashing the Potential of Urban Growth. New York, USA: UNFPA, 2007.
G. Crosta and P. Frattini, “Distributed modeling of shallow landslides triggered by intense rainfall”, Natural Hazard and Earth System Sciences, vol. 3, no. 1-2, pp. 81-93, 2003.
D. Brunsden, “Geomorphological roulette for engineers and planners: some insights into an old game”, Quart. J. of Engng. Geol and Hydro., vol. 35, no. 2, pp. 101-142, 2002.
J. Hutchinson and R. Bhandari, “Undrained loading, a fundamental mechanism of mudflows and other mass movements”, Géotechnique, vol. 21, no. 4, pp. 353-358, 1971.
A. Scott and N. Sitar, “Analysis of rainfall-induced debris flows”, Journal of Geotechnical Engineering, vol. 121, no. 7, pp. 544-552, 1995.
W. Take, M. Bolton, P. Wong and F. Yeung, “Evaluation of landslide triggering mechanisms in model fill slopes”, Landslides, vol. 1, no. 3, pp. 173-184, 2004.
K. Sassa and G. Wang, “Mechanism of landslide- triggered debris flows: Liquefaction phenomena due to the undrained loading of torrent deposits”, in Debris- flow Hazards and Related Phenomena, M. Jakob and O. Hungr (eds). Chichester, UK: Springer Praxis Books, 2005, pp. 81-104.
A. Askarinejad et al., “Physical modelling of rainfall induced landslides under controlled climatic conditions”, in Eurofuge, Delft, Netherlands, 2012.
H. Rahardjo, T. Lim, M. Chang and D. Fredlund, “Shear- strength characteristics of a residual soil”, Canadian Geotechnical Journal, vol. 32, no. 1, pp. 60-77, 1995.
G. Wang and K. Sassa, “Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content”, Engineering Geology, vol. 69, no. 1-2, pp. 109-125, 2003.
B. Collins and D. Znidarcic, “Stability analyses of rainfall induced landslides”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 130, no. 4, pp. 362- 372, 2004.
W. Wu and R. Sidle, “A distributed slope stability model for steep forested basins”, Water Resources Research, vol. 31, no. 8, pp. 2097-2110, 1995.
M. Borga, G. Fontana, D. Daros and L. Marchi, “Shallow landslide hazard assessment using a physically based model and digital elevation data”, Environmental Geology, vol. 35, no. 2, pp. 81-88, 1998.
G. Crosta, “Regionalization of rainfall thresholds: an aid to landslide hazard evaluation”, Environmental Geology, vol. 35, no. 2, pp. 131-145, 1998.
A. Burton and J. Bathurst, “Physically based modeling of shallow landslide sediment yield at a catchment scale”, Environmental Geology, vol. 35, no. 2, pp. 89-99, 1998.
J. Grifiths, A. Collison and S. Wade, “The validity of using a simplified distributed hydrological model for estimation of landslide probability under a climate change scenario”, in 4th International Conference on GeoComputation, Virginia, USA, 1999.
P. Frattini, B. Crosta, N. Fusi, and P. Negro, “Shallow landslides in pyroclastic soils: a distributed modeling approach for hazard assessment”, Engineering Geology, vol. 73, no. 3-4, pp. 277-295, 2004.
G. Bussi, F. Francés, J. Montoya and P. Julien, “Distributed sediment yield modelling: Importance of initial sediment conditions”, Environmental Modelling & Software, vol. 58, pp. 58-70, 2014.
D. Montgomery and W. Dietrich, “A physically based model for the topographic control on shallow landsliding”, Water Resource Research, vol. 30, no. 4, pp. 1153-1171, 1994.
R. Iverson, “Landslide triggering by rain infiltration”, Water Resources Research, vol. 36, no. 7, pp. 1897-1910, 2000.
P. Troch, E. Loon and A. Hilberts, “Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow”, Advances in Water Resources, vol. 25, no. 6, pp. 637-649, 2002.
C. Paniconi, P. Troch, E. Loon and A. Hilberts, “Hillslope- storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 2. Intercomparison with a three-dimensional Richards equation model”, Water Resource Research, vol. 39, no. 11, pp. 1317-1329, 2003.
A. Rezzoug, A. Schumann, P. Chifflard and H. Zepp, “Field measurements of soil moisture dynamics and numerical simulation using the kinematic wave approximation”, Advances in Water resources, vol. 28, no. 9, pp. 917-926, 2005.
R. Pack, D. Tarboton and C. Goodwin, “Terrain Stability Mapping with SINMAP, technical description and users guide for version 1.00”, Terratech Consulting Ltd, Salmon Arm, Canada, Rep. 4114-0, 1998.
C. Hammond, D. Hall, S. Miller and P. Swetik, “Level I Stability Analysis (LISA) Documentation for Version 2.0”, U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, USA, General Tech. Rep. INT-285, 1992.
A. Dhakal and R. Sidle, “Distributed simulations of landslides for different rainfall conditions”, Hydrological Processes, vol. 18, no. 4, pp. 757-776, 2004.
M. Anderson and D. Lloyd, “Using a Combined Slope Hydrology-stability Model to Develop Cut Slope Design Charts”, Proc. Inst. Civ. Engineers, vol. 91, no. 4, pp. 705- 718, 1991.
R. Baum, W. Savage and W. Godt, “TRIGRS-A Fortran program for transient rainfall infiltration and grid- based regional slope-stability analysis, version 2.0”, U.S. Department of the Interior, U.S. Geological Survey, Denver, USA, Open-File Rep. 2008-1159, 2008.
G. Rossi, F. Catani, L. Leoni, S. Segoni and V. Tofani, “HIRESSS: a physically based slope stability simulator for HPC applications”, Nat. Hazards Earth Syst. Sci., vol. 13, pp. 151-166, 2013.
S. Simoni, F. Zanotti, G. Bertoldi and R. Rigon, “Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop- FS”, Hydrological Processes, vol. 22, no. 4, pp. 532- 545, 2008.
E. Arnone, L. Noto, C. Lepore and R. Bras, “Physically- based and distributed approach to analyze rainfall-triggered landslides at watershed scale”, Geomorphology, vol. 133, no. 3-4, pp. 121-131, 2011.
V. Ivanov, E. Vivoni, R. Bras and D. Entekhabi, “Catchment hydrologic response with a fully distributed triangulated irregular network model”, Water Resources Research, vol. 40, no. 11, 2004.
E. Aristizábal, J. Vélez, H. Martínez and M. Jaboyedoff, “SHIA_Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins”, Landslides, vol. 13, no. 3, pp. 497-517, 2016.
J. Vélez, “Desarrollo de un modelo hidrológico conceptual y distribuido orientado a la simulación de las crecidas”, Ph.D. dissertation, Universidad Politécnica de Valencia, Valencia, Spain, 2001.
J. Vélez, F. Francés and J. Vélez, “No linealidad del flujo en los cauces de la red de drenaje y sus implicaciones en la modelación hidrológica”, in XX Latin American Congress of Hydraulics, La Habana, Cuba, 2002.
J. Vélez and F. Francés, “Calibración automática de las condiciones iniciales de humedad para mejorar la predicción de eventos de crecida”, Avances en Recursos Hidráulicos, no. 18, pp. 25-36, 2008.
J. Graham, “Methods of Stability Analysis”, in Slope Instability, D. Brunsden and D. Prior (eds). New York, USA: John Wiley and Sons, pp. 171-215, 1984.
J. Montoya and F. Francés, Modelo conceptual de producción, transporte y depósito de sedimentos. Modelando los ciclos hidrológico y sedimentológico a escala de cuenca. Publicia, 2013.
A. Parsons, A. Abrahams and J. Wainwright, “On determining resistance to interrill overland flow”, Water Resources Research, vol. 30, no. 12, pp. 3515- 3521, 1994.
J. Kubota and M. Sivapalan, “Towards a catchment- scale model of subsurface runoff generation based on synthesis of small-scale process-based modeling and field studies”, Hydrological Processes, vol. 9, no. 5-6, pp. 541-554, 1995.
L. Leopold and T. Maddock, “The Hydraulic geometry of stream channels and some physiographic implications”, U.S. Department of the Interior, U.S. Geological Survey, Washington, D.C., USA, Geological Survey Professional Paper 252, 1953.
Instituto Geográfico Agustín Codazzi (IGAC), Estudio general de suelos y zonificación de tierras del departamento de Antioquia. Bogotá, Colombia: IGAC, 2007.
R. Mejía and M. Velásquez, “Procesos y depósitos asociados al aguacero de septiembre 21 de 1990 en el Área de San Carlos (Antioquia)”, Undergaduate thesis, Universidad Nacional de Colombia, Medellín, Colombia, 1991.
INTEGRAL S.A. “Informe sobre daños en la central de calderas por la avalancha ocurrida en la quebrada La Arenosa el 21 de septiembre de 1990 y su reparación”, Interconexión eléctrica S.A. (ISA), Medellín, Colombia, Rep., 1990.
M. Hermelin, O. Mejía and E. Velásquez, “Erosional and depositional features produced by a convulsive event, San Carlos, Colombia, September 21, 1990”, Bulletin of the International Association of Engineering Geology, vol. 45, no. 1, pp. 89-95, 1992.
M. Ostrowski, “Linearity of hydrological models and related uncertainty”, in ESF LESC Exploratory Workshop, Bologna, Italy, 2003, pp 1-10.
K. Beven, “How far can we go in distributed hydrological modelling?”, Hydrology and Earth System Sciences, vol. 5, no. 1, pp.1-12, 2001.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.