Separador supersónico de LGN: modelación, mejora, y validación y ajuste del modelo de turbulencia k-épsilon RNG modificado para flujo remolino

Autores/as

  • Marco Andrés Guevara-Luna Universidad Nacional de Colombia https://orcid.org/0000-0002-1541-4332
  • Luis Carlos Belalcázar-Cerón Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.redin.n82a11

Palabras clave:

CFD, procesamiento de gas, separador ciclónico, flujo multifásico, turbulencia

Resumen

El procesamiento de gas natural requiere la aplicación de nuevas tecnologías en un contexto de aumento de la demanda en todo el mundo. La separación de líquidos de gas natural (LGN) utilizando dispositivos supersónicos, es una novedosa y eficiente manera de reducir el volumen de equipos instalados y costos, utilizando los efectos de los flujos circulares altamente turbulentos. En esta investigación se implementa dinámica computacional de fluidos (CFD) para mejorar la eficiencia del proceso típico de recuperación de LGN utilizando el enfoque supersónico. También se puso en práctica un nuevo enfoque de modelado de la turbulencia con el objetivo de minimizar el tiempo de procesamiento, los resultados obtenidos fueron validados con datos experimentales disponibles. Esta investigación se basa en el modelo llamado k-épsilon RNG modificado para flujo remolino; este modelo no se ha utilizado ni validado antes en sistemas de flujo altamente compresibles, turbulentos y circulares. La eficiencia del proceso fue mejorada en un 11% en comparación con la eficiencia reportada en investigaciones previas, y el tiempo de procesamiento para el modelado redujo 40% con el enfoque turbulencia propuesto y ajustado. Durante la validación del modelo k-épsilon RNG modificado para flujo remolino el factor de remolino, parte del modelo de turbulencia, se ajustó a un valor óptimo para sistemas de flujo compresibles, turbulentos y circulares que participan en procesos de separación de NGL supersónico, lo que permite obtener resultados más precisos y con un menor tiempo de procesamiento en comparación con otros enfoques típicos y comunes como RSM y LES.

|Resumen
= 352 veces | PDF (ENGLISH)
= 249 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Marco Andrés Guevara-Luna, Universidad Nacional de Colombia

Departamento de Ingeniería Química y Ambiental.

Luis Carlos Belalcázar-Cerón, Universidad Nacional de Colombia

Departamento de Ingeniería Química y Ambiental.

Citas

UPME (Unidad de Planeación Minero Energética), Balance de Gas Natural en Colombia 2015-2023, 2015. [Online]. Available: http://www1.upme.gov.co/sites/default/files/BALANCE_GAS_NATURAL_FINAL.pdf. Accessed on: Mar. 27, 2016.

U.S. Energy Information Administration, Global natural gas consumption doubled from 1980 to 2010, 2012. [Online]. Available: http://www.eia.gov/todayinenergy/detail.cfmid=5810. Accessed on: Feb. 16, 2016.

M. Betting, T. van Holten, and B. Prast, “Cyclonic fluid separator with vortex generator in inlet section,” U.S. Patent 7 357 825 B2, Apr. 15, 2008

B. Prast, B. Lammers, and M. Betting, “CFD For Supersonic Gas Processing,” in 5th International Conference on CFD in the Process Industries CSIRO, Melbourne, Australia, 2006, pp. 1-6.

Genesis Oil & Gas Consultants Ltd, “Twister NGL Recovery Study,” Genesis Oil & Gas Consultants Ltd, London, UK, Tech. Rep. J-10205/A, Jan. 2008.

A. Stankiewicz, “Reactive Separations for Process Intensification: An Industrial Perspective,” Chemical Engineering and Processing, vol. 42, no. 3, pp. 137-144, 2003.

M. Guevara, “Diseño de un equipo de recuperación de líquidos de gas natural empleando CFD,” M.S. thesis, National University of Colombia, Bogotá, Colombia, 2015.

C. Tjeenk, M. Betting, J. Geldorp and B. Prast, “Method and device for enhancing condensation and separation in a fluid separator,” U.S. Patent 7 909 912 B2, Mar. 22, 2011.

C. Tjeenk, M. Betting, and F. Lammers, “Cyclonic separator with a volute outlet duct,” U.S. Patent 8 398 734 B2, Mar. 19, 2013.

J. Tetteroo, “Installation and procedure for sampling of fine particles,” E.P. Patent 2 226 109 A1, Sep. 8, 2010.

E. Jassim, M. A. Abdi, and Y. Muzychka, “A New Approach to Investigate Hydrate Deposition in Gas- Dominated Flowlines,” Journal of Natural Gas Science and Engineering, vol. 2, no. 4, pp. 163-177, 2010.

Gas Processors Suppliers Association (GPSA), Gas Processors Suppliers Association - Engineering Data Book, 5th ed. USA: GPSA, 2004.

P. Schinkelshoek and H. D. Epsom, “Supersonic Gas Conditioning-Commercialisation of Twister™ Technology,” in 87th Annual Convention, Grapevine, TX, USA, 2008, pp. 1-7.

ANSYS, Inc., ANSYS Fluent Theory Guide 15.0. Canonsburg, PA, USA: Ansys, Inc., 2013.

A. D. Cutler and J. A. White, An Experimental and CFD Study of a Supersonic Coaxial Jet, 2001. [Online]. Available: http://vulcan-cfd.larc.nasa.gov/WebPage/AIAA-20010143.pdf. Accessed on: May 20, 2016.

P. B. Machado, J. Monteiro, J. L. Medeiros, H. D. Epsom, and O. Araujo, “Supersonic Separation in Onshore Natural Gas Dew Point Plant,” Journal of Natural Gas Science and Engineering, vol. 6, pp. 43-49, 2012.

API (American Petroleum Institute), Specification for Glycol-Type Gas Dehydration Units, 5th ed. Houston, USA: American Petrolium Institute, 1990.

R. Utikar et al., “Hydrodynamic Simulation of Cyclone Separators,” Computational Fluid Dynamics, H. W. Oh (ed). Perth, Australia: InTech, 2010, pp. 241-266.

W. Zhongyi, Y. Changlong, H. Jia, and Y. Yunliang, “The Analysis of Internal Flow Field in Oil-Gas Separator,” Procedia Engineering, vol. 15, pp. 4337-4341, 2011.

H. Wang et al., “CFD Modelling of Hydrodynamic Characteristics of a Gas-Liquid Two-Phase Stirred Tank,” Applied Mathematical Modelling, vol. 38, no. 1, pp. 63-92, 2014.

M. Mohammadi, S. Shahhosseini, and M. Bayat, “Direct Numerical Simulation of Water Droplet Coalescence in the Oil,” International Journal of Heat and Fluid Flow, vol. 36, pp. 58 71, 2012.

V. Kalikmanov, M. Betting, J. Bruining, and D. M. Smeulders, “New Developments in Nucleation Theory and Their Impact on Natural Gas Separation,” in SPE Annual Technical Conference and Exhibition, Anaheim, USA, 2007.

F. Guevara, J. Reyes, and M. Guevara, “Diseño y evaluación de un ciclón para separación de sólidos y gas de una corriente con un flujo multifásico empleando dinámica de fluidos computacional,” Revista Virtual Pro, 2015.

M. Betting, C. Tjeenk, Z. Opic, and S. Sebastian, “Ice Phobic Coating and Use Thereof”, U.S. Patent 20110123736 A1, May 26, 2011.

M. Betting, M. Theodoor Van Holten, and Bart Prast, “Cyclonic Fluid Separator With Vortex Generator in the Inlet Section”, U.S. Patent 7 357 825 B2, Apr. 15, 2008.

M. Betting, C. A. Tjeenk, B. Prast, and Z. Opic, “Fluid separator comprising a central body,” U.S. Patent 8 226 743 B2, Jul. 24, 2012.

M. Betting, B. Prast, and H. D. Epsom, “Improved Choke Valve Design for De-Bottlenecking Gas Processing Facilities,” in GPA Europe Offshore Processing and Knowledge Session, London, UK, 2009.

Descargas

Publicado

2017-03-16

Cómo citar

Guevara-Luna, M. A., & Belalcázar-Cerón, L. C. (2017). Separador supersónico de LGN: modelación, mejora, y validación y ajuste del modelo de turbulencia k-épsilon RNG modificado para flujo remolino. Revista Facultad De Ingeniería Universidad De Antioquia, (82), 82–93. https://doi.org/10.17533/udea.redin.n82a11