Estudios estructurales y vibracionales en compósitos (PEO)10CF3COONa + x wt.% Al2O3

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.n83a06

Palabras clave:

compositos, espectroscopía Raman, espectroscopía infrarroja, conductividad iónica

Resumen

Se  sintetizaron  comp ó sitos  formados  entre  polióxido  de  etileno  (PEO)  y   trifluoroacetato  de  sodio  (PEO10CF3COONa)  con  diferentes  concentraciones  de  óxido  de   aluminio  (Al2O3).  Los  comp ó sitos  fueron  caracterizados  por  espectroscopía  infrarroja  (IR),   espectroscopía Raman, difracción de rayos X (XRD) y microscopía de fuerza atómica (AFM).  Las combinaciones del electrolito sólido PEO10CF3COONa con diferentes concentraciones de  Al2O3,  mostraron  cambios  en  la  intensidad  de  los  picos  de  XRD,  así  como  cambios  en  la   intensidad y posición de algunos picos de IR y Raman. El decrecimiento de los picos del PEO  en  XRD,  cuando  este  fue  combinado  con  la  sal,  reveló  que  la  cristalinidad  del  polímero  se   redujo, siendo más baja cuando se le adicion ó  alúmina. Se observó un incremento en la raíz  cuadrática media de la rugosidad (R RMS ) obtenida por microscopia de fuerza atómica cuando  se adicionó Al2O3.  Este incremento está en concordancia con la reducción de la cristalinidad  observada  con  estudios  de  XRD.  Los  cambios  en  la  estructura  del  PEO  mostrados  en   las  líneas  de  absorción  de  IR  y  Raman,  debidos  a  la  adición  de  CF3COONa  y  Al2O3 ,  fueron   atribuidos a interacciones entre el electrolito y el relleno Al2O3.

|Resumen
= 385 veces | PDF (ENGLISH)
= 225 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Miguel Iban Delgado-Rosero, Universidad del Tolima

Grupo de Investigación de Materiales Semiconductores y Superiónicos, Departamento de Física, Facultad de Ciencias.

Nori Magali Jurado-Meneses, Universidad del Tolima

Grupo de Investigación de Materiales Semiconductores y Superiónicos, Departamento de Física, Facultad de Ciencias.

Miguel Ángel Meléndez-Lira, Instituto Politécnico Nacional de México

Departamento de Física, Centro de Investigaciones y Estudios Avanzados del Instituto Politécnico Nacional.

Citas

H. S. Han, C. Cho, S. Y. Kim, and J. M. Hyun, “Performance evaluation of a polymer electrolyte membrane fuel cell system for powering portable freezer,” Appl. Energy, vol. 105, pp. 125–137, 2013.

M. R. Johan, O. H. Shy, S. Ibrahim, S. M. Mohd, and T. Y. Hui, “Effects of Al2O3 nanofiller and EC plasticizer on the ionic conductivity enhancement of solid PEO-LiCF3SO3 solid polymer electrolyte,” Solid State Ionics, vol. 196, no. 1, pp. 41–47, 2011.

B. Kumar, S. J. Rodrigues, and R. J. Spry, “Dipoles and their possible effects on conductivity in polymer-ceramic composite electrolytes,” Electrochim. Acta, vol. 47, no. 8, pp. 1275–1281, 2002.

H. J. Walls et al., “Fumed silica-based composite polymer electrolytes: Synthesis, rheology, and electrochemistry,” J. Power Sources, vol. 89, no. 2, pp. 156–162, 2000.

F. Croce, G. B. Appetecchi, L. Persi, and B. Scrosati, “Nanocomposite polymer electrolytes for lithium batteries,” Nature, vol. 394, pp. 456–458, 1998.

F. Croce et al., “Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes,” Electrochim. Acta, vol. 46, no. 16, pp. 2457–2461, 2001.

M. Marcinek et al., “Effect of filler surface group on ionic interactions in PEG-LiClO4-Al2O3 composite polyether electrolytes,” J. Phys. Chem. B, vol. 104, no. 47, pp. 11088–11093, 2000.

W. Wieczorek, Z. Florjanczyk, and J. R. Stevens, “Composite polyether based solid electrolytes,” Electrochim. Acta, vol. 40, no. 13-14, pp. 2251–2258, 1995.

T. J. Singh and S. V. Bhat, “Increased lithium-ion conductivity in (PEG)46LiClO4 solid polymer electrolyte with δ-Al2O3 nanoparticles,” J. Power Sources, vol. 129, no. 2, pp. 280–287, 2004.

Z. Wang, Y. Hu, and L. Chen, “Some studies on electrolytes for lithium ion batteries,” J. Power Sources, vol. 146, no. 1-2, pp. 51–57, 2005.

T. Mohamed, N. Padmanathan, and S. Selladurai, “Effect of nanofiller CeO2 on structural, conductivity, and dielectric behaviors of plasticized blend nanocomposite polymer electrolyte,” Ionics, vol. 21, no. 3, pp. 829-840, 2015.

L. Tadiello et al., “The filler-rubber interface in styrene butadiene nanocomposites with anisotropic silica particles: morphology and dynamic properties,” Soft Matter, vol. 11, no. 20, pp. 4022-4033, 2015.

M. Mariano, N. El Kissi, and A. Dufresne, “Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges,” J. Polym. Sci. Part B: Polym. Phys., vol. 52, no. 12, pp. 791–806, 2014.

J. Zhou and P. S Fedkiw, “Ionic conductivity of composite electrolytes based on oligo(ethylene oxide) and fumed oxides,” Solid State Ionics, vol. 166, no. 3-4, pp. 275–293, 2004.

K. Vignarooban, M. Dissanayake, I. Albinsson, and B. Mellander, “Ionic conductivity enhancement in PEO:CuSCN solid polymer electrolyte by the incorporation of nickel-chloride,” Solid State Ionics, vol. 278, pp. 177–180, 2015.

A. Pereira et al., “Effect of starch type on miscibility in poly(ethylene oxide) (PEO)/starch blends and cytotoxicity assays,” Mater. Sci. Eng.: C., vol. 31, no. 2, pp. 443–451, 2011.

Y. Kumar, S. A. Hashmi, and G. P. Pandey, “Lithium ion transport and ion-polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid,” Solid State Ionics, vol. 201, no. 1, pp. 73–80, 2011.

S. Ramesh, T. F. Yuen, and C. J. Shen, “Conductivity and FTIR studies on PEO-LiX [X: CF3SO3-, SO42-] polymer electrolytes,” Spectrochim. Acta - Part A: Mol. Biomol. Spectrosc., vol. 69, no. 2, pp. 670–675, 2008.

N. Shukla and A. K. Thakur, “Enhancement in electrical and stability properties of amorphous polymer based nanocomposite electrolyte,” J. Non. Cryst. Solids, vol. 357, no. 22-23, pp. 3689–3701, 2011.

R. Meziane, J. P. Bonnet, M. Courty, K. Djellab, and M. Armand, “Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries,” Electrochim. Acta, vol. 57, pp. 14–19, 2011.

J. Castillo, I. Delgado, M. Chacón, and R. A. Vargas, “New solid ionic conductor based on poly(ethylene oxide) and sodium trifluoroacetate,” Electrochim. Acta, vol. 46, no. 10-11, pp. 1695–1697, 2001.

I. Horcas et al., “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum., vol. 78, no. 1, pp. 013705-1–013705-8, 2007.

S. Klongkan and J. Pumchusak, “Effects of Nano Alumina and Plasticizers on Morphology, Ionic Conductivity, Thermal and Mechanical Properties of PEO-LiCF3SO3 Solid Polymer Electrolyte,” Electrochim. Acta, vol. 161, pp. 171–176, 2015.

N. M. Jurado, I. Delgado, and R. A. Vargas, “Conductividad iónica en nuevos compósitos (PEO)10 (CF3COONa)-X % Al2O3,” Univ. Sci. vol. 18, no. 2, pp. 173–180, 2013.

S. K. Chaurasia, R. K. Singh, and S. Chandra, “Ion-polymer complexation and ion-pair formation in a polymer electrolyte PEO:LiPF6 containing an ionic liquid having same anion: A Raman study,” Vib. Spectrosc., vol. 68, pp. 190–195, 2013.

G. A. Crowder, “Infrared spectra of trifluoroacetate esters,” Journal of Fluorine Chemistry, vol. 1, no. 2, pp. 219–225, 1971.

S. Das and A. Ghosh, “Structure, ion transport, and relaxation dynamics of polyethylene oxide/poly (vinylidene fluoride co-hexafluoropropylene) - Lithium bis(trifluoromethane sulfonyl) imide blend polymer electrolyte embedded with ionic liquid,” J. Appl. Phys., vol. 119, no. 9, pp. 095101-1–095101-9, 2016.

T. K. Gounev, G. A. Guirgis, and J. R. Durig, “Vibrational spectra, conformational stability and ab initio calculations of trifluoromethylsulfonyl isocyanate,” J. Mol. Struct., vol. 436-437, pp. 613-625, 1997.

K. O. Christe, “Vibrational spectra of trifluoroacetates,” Spectrochim. Acta Part A: Mol. Spectrosc., vol. 29, no. 12, pp. 2017–2024, 1973.

H. Beckers, H. Bürger, and R. Eujen, “Vibrational spectra and normal coordinate analysis of CF3 compounds: Part XLVII. Vibrational spectra, normal coordinate analysis and electron diffraction investigation of CF3SiH3 and its deuterated varieties,” Journal of Molecular Structure, vol. 140, no. 3-4, pp. 281–301, 1986.

L. J. Hardwick, M. Holzapfel, A. Wokaun, and P. Novák, “Raman study of lithium coordination in EMI-TFSI additive systems as lithium-ion battery ionic liquid electrolytes,” J. Raman Spectrosc., vol. 38, no. 1, pp. 110–112, 2007.

C. Sequeira and D. Santos, Polymer electrolytes: fundamentals and applications, 1st ed. Cambridge, UK: Woodhead Publishing, 2010.

B. Mattsson et al., “Raman scattering investigations of PEO and PPO sulphonic acids,” Solid State Ionics, vol. 97, no. 1-4, pp. 309–314, 1997.

C. M. Burba, “Local Structures in PEO-[C2mim]CF3SO3 Electrolytes Used in Electrochemical Double-Layer Capacitors,” ECS Trans., vol. 13, no. 17, pp. 3–11, 2008.

J. Maxfield and I. W. Shepherd, “Conformation of poly(ethylene oxide) in the solid state, melt and solution measured by Raman scattering,” Polymer, vol. 16, no. 7, pp. 505–509, 1975.

R. E. Robinson and R. C. Taylor, “Roman spectrum and vibrational assignments for the trifluoroacetate ion,” Spectrochim. Acta, vol. 18, no. 8, pp. 1093–1097, 1962.

C. P. Rhodes and R. Frech, “A symmetry-based analysis of Raman and infrared spectra of the compounds (poly(ethylene oxide))3LiCF3SO3 and (poly(ethylene oxide))NaCF3SO3,” Solid State Ionics, vol. 136-137, pp. 1131–1137, 2000.

S. Yang, Z. Liu, Y. Liu, and Y. Jiao, “Effect of molecular weight on conformational changes of PEO: an infrared spectroscopic analysis,” J. Mater. Sci., vol. 50, no. 4, pp. 1544–1552, 2015.

C. Bergeron, E. Perrier, A. Potier, and G. Delmas, “A Study of the Deformation, Network, and Aging of Polyethylene Oxide Films by Infrared Spectroscopy and Calorimetric Measurements,” Int. J. Spectrosc., vol. 2012, pp. 1–13, 2012.

G. A. Crowder and D. Jackson, “Infrared and Raman spectra of methyl trifluoroacetate,” Spectrochim. Acta Part A: Mol. Spectrosc., vol. 27, no. 9, pp. 1873–1877, 1971.

A. R. Polu, D. K. Kim, and H. W. Rhee, “Poly(ethylene oxide)-lithium difluoro(oxalato)borate new solid polymer electrolytes: ion–polymer interaction, structural, thermal, and ionic conductivity studies,” Ionics, vol. 21, no. 10, pp. 2771–2780, 2015.

Z. Shen, G. P. Simon, and Y. B. Cheng, “Comparison of solution intercalation and melt intercalation of polymer–clay nanocomposites,” Polymer, vol. 43, no. 15, pp. 4251–4260, 2002.

K. N. Kumar, M. Kang, K. Sivaiah, M. Ravi, and Y. C. Ratnakaram, “Enhanced electrical properties of polyethylene oxide (PEO) + polyvinylpyrrolidone (PVP):Li+ blended polymer electrolyte films with addition of Ag nanofiller,” Ionics, vol. 22, no. 6, pp. 815–825, 2016.

S. Jayanthi, A. Arulsankar, and B. Sundaresan, “NanoSrTiO3-filled PEO–P(VdF-HFP)–LiClO4 electrolytes with improved electrical and thermal properties,” Appl. Phys. A, vol. 122: 109, 2016.

I. Delgado, J. Castillo, M. Chacón, and R. A. Vargas, “Ionic Conductivity in the Polymer Electrolytes PEO/CF3COONa,” Physica status solidi (b), vol. 220, no. 1, pp. 625–629, 2000.

B. Scrosati, F. Croce, and L. Persi, “Impedance Spectroscopy Study of PEO-Based Nanocomposite Polymer Electrolytes,” J. Electrochem. Soc., vol. 147, no. 5, pp. 1718–1721, 2000.

P. Prabakaran and R. P. Manimuthu, “Enhancement of the electrochemical properties with the effect of alkali metal systems on PEO/PVdF-HFP complex polymer electrolytes,” Ionics, vol. 22, no. 6, pp. 827–839, 2016.

Descargas

Publicado

2017-06-26

Cómo citar

Delgado-Rosero, M. I., Jurado-Meneses, N. M., & Meléndez-Lira, M. Ángel. (2017). Estudios estructurales y vibracionales en compósitos (PEO)10CF3COONa + x wt.% Al2O3. Revista Facultad De Ingeniería Universidad De Antioquia, (83), 43–49. https://doi.org/10.17533/udea.redin.n83a06

Artículos similares

1 2 3 4 5 6 7 8 > >> 

También puede {advancedSearchLink} para este artículo.