Simulación CFD y validación del flujo en pequeñas arterias para estudios posteriores en liberación de fármacos
DOI:
https://doi.org/10.17533/udea.redin.20191257Palabras clave:
dinámica de fluidos computacional, análisis de elementos finitos, validación experimental, distribución localizada de fármacosResumen
Los tratamientos basados en nanoportadores como las nanopartículas han surgido como alternativa para superar las limitaciones y los efectos secundarios de los tratamientos tradicionales contra el cáncer y las enfermedades neurológicas. La principal ventaja de las nanopartículas radica en el hecho de que pueden transportar agentes farmacológicos de forma guiada, de modo que las drogas alcanzan preferiblemente tejidos afectados en vez de tejidos sanos. Este trabajo se enfocó en el modelado y simulación del flujo de fluido en arterias pequeñas y la validación experimental del modelo a través de medidas cuantitativas de presión y tasas de flujo, a la luz de diferentes índices de porcentaje de ajuste entre los valores simulados y medidos. El modelo fue previamente verificado mediante el análisis de convergencia de la malla y las observaciones cualitativas del perfil de velocidad. Nuestros hallazgos sirven como base sólida para el estudio del transporte de nanopartículas dentro de las arterias, ya que la plataforma desarrollada puede ser empleada para su liberación y manipulación remota tanto in silico como in vitro.
Descargas
Citas
W. Aadinath, T. Ghosh, and C. Anandharamakrishnan, “Multimodal magnetic nano-carriers for cancer treatment: Challenges and advancements,” Journal of Magnetism and Magnetic Materials, vol. 401, March 01 2016. [Online]. Available: https://doi.org/10.1016/j.jmmm.2015.10.123
L. Agiotis and et al., “Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications,” J. Magn. Magn. Mater., vol. 401, March 01 2016. [Online]. Available: https://doi.org/10.1016/j.jmmm.2015.10.111
J. K. Patra and et al., “Nano based drug delivery systems: Recent developments and future prospects 10 technology 1007 nanotechnology 03 chemical sciences 0306 physical chemistry (incl. structural) 03 chemical sciences 0303 macromolecular and materials chemistry 11 medical and health sciences 1115 pharmacology and pharmaceutical sciences 09 engineering 0903 biomedical engineering prof ueli aebi, prof peter gehr,” J. Nanobiotechnology, vol. 16, no. 1, September 19 2018. [Online]. Available: https://doi.org/10.1186/s12951-018-0392-8
A. P. Singh, A. Biswas, A. Shukla, and P. Maiti, “Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles,” Signal Transduct. Target. Ther., vol. 4, August 30 2019. [Online]. Available: https://doi.org/10.1038/s41392-019-0068-3
T. Tagami, M. Taki, and T. Ozeki, Nanomaterials in Pharmacology, 39th ed. New York, USA: Springer, 2016.
Wahajuddin and S. Arora, “Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers,” Int. J. Nanomedicine, vol. 7, 2012. [Online]. Available: https://doi.org/10.2147/IJN.S30320
R. Tietze and et al., “Magnetic nanoparticle-based drug delivery for cancer therapy,” Biochem. Biophys. Res. Commun., vol. 468, no. 3, December 18 2015. [Online]. Available: https://doi.org/10.1016/j.bbrc.2015.08.022
T. D. Do, Y. Noh, M. O. Kim, and J. Yoon, “An electromagnetic steering system for magnetic nanoparticle drug delivery,” in 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Goyang, South Korea, 2015, pp. 528–531.
W. A. Banks, “From blood-brain barrier to blood-brain interface: new opportunities for cns drug delivery,” Nat. Rev. Drug Discov., vol. 15, no. 4, April 2016. [Online]. Available: https://doi.org/10.1038/nrd.2015.21
I. Khalin, R. Alyautdin, M. I. Nafeeza, M. H. Haron, and D. Kuznetsov, “Nanoscale drug delivery systems and the blood-brain barrier,” Int. J. Nanomedicine, vol. 9, February 2014. [Online]. Available: https://doi.org/10.2147/IJN.S52236
M. Srikanth and J. A. Kessler, “Nanotechnology-novel therapeutics for cns disorders,” Nat. Rev. Neurol., vol. 8, no. 6, April 2012. [Online]. Available: https://doi.org/10.1038/nrneurol.2012.76
C. Saraiva and et al., “Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases,” J. Control. Release, vol. 10, August 2016. [Online]. Available: https://doi.org/10.1016/j.jconrel.2016.05.044
P. M. Valencia, O. C. Farokhzad, R. Karnik, and R. Langer, “Microfluidic technologies for accelerating the clinical translation of nanoparticles,” Nat. Nanotechnol., vol. 7, no. 10, October 2012. [Online]. Available: https://doi.org/10.1038/nnano.2012.168
A. H. Choi, R. C. Conway, and B. Ben-Nissan, “Finite-element modeling and analysis in nanomedicine and dentistry,” Nanomedicine, vol. 9, no. 11, August 2014. [Online]. Available: https://doi.org/10.2217/nnm.14.75
G. A. Truskey, F. Yuan, and D. F. Katz, Transport Phenomena in Biological Systems, 2nd ed. Durham, NC: Pearson Prentice Hall, 2004.
(2015) Package ‘hydroGOF’ title goodness-of-fit functions for comparison of simulated and observed hydrological time series. hydroGOF. Accessed Oct. 13, 2016. [Online]. Available: https://bit.ly/2O76ehv
P. Krause, D. P. Boyle, and F. Base, “Comparison of different efficiency criteria for hydrological model assessment,” Adv. Geosci., vol. 5, December 16 2005. [Online]. Available: https://doi.org/10.5194/adgeo-5-89-2005
M. Mercado, A. M. Hernandez, and J. C. Cruz, “Permanent magnets to enable highly-targeted drug delivery applications: A computational and experimental study,” in VII Latin American Congress on Biomedical Engineering CLAIB, Bucaramanga, Colombia, 2016, pp. 557–560.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.