A fuzzy logic system to evaluate levels of trust on linked open data resources





Linked Open Data (LOD), Levels of trust, Open data consumption, Fuzzy logic, Fuzzy systems type I


Linked Data is a way of using the network by creating links among data from different information sources in order to improve search processes, semantic interoperability among other functionalities. One of the strategies used to perform linked resources queries is through the consumption of SPARQL Endpoints. However, to determine existent trust levels within and outside the knowledge domains where such resources are, the operation of these Endpoints is one of the critical factors for both to realize the state of these resources and their subsequent consumption. To recognize these states, the present article aims at exposing the description, modeling, implementation and analysis of a type-I fuzzy system based on logical rules. It also addresses decision-making regarding the uncertainty that presents the definition of levels of trust to determine the consumption obtained over a set of LOD Datasets Located in several Endpoints. Finally, it presents results, conclusions and further work from a case study performed through the postulation of parameters obtained at runtime over several Endpoints.

= 165 veces | PDF
= 191 veces|


Download data is not yet available.

Author Biographies

Jhon Francined Herrera-Cubides, Francisco José de Caldas District University

GIIRA Research Group, Faculty of Engineering.

Paulo Alonso Gaona-García, Francisco José de Caldas District University

GIIRA Research Group, Faculty of Engineering.


Jorge Iván Alonso-Echeverri, Francisco José de Caldas District University

GIIRA Research Group, Faculty of Engineering.

Kevin Alexandre Riaño-Vargas, Francisco José de Caldas District University

GIIRA Research Group, Faculty of Engineering.


T. Berners, J. Hendler, and O. Lassila. ”The Semantic Web,” Scientific American, vol. 284, no. 5, pp. 29-37, 2001.

A. A Rodríguez ”Las nuevas pautas para el acceso a la información,” Investigación Bibliotecológica: Archivonomía, Bibliotecología e Información, vol. 30, no. 69, pp. 117-135, 2016.

W3C, Data on the Web Best Practices, 2017. [Online]. Available: https://w3c.github.io/dwbp/bp.html. Accessed on: July 25, 2017.

A. Zaveri, et al., ”Quality Assessment Methodologies for Linked Open Data. A Systematic Literature Review and Conceptual Framework,” IO Press Journal, no. 1, pp. 1-5, 2012.

L. Page, S. Brin, R. Motwani, and T. Winograd, ”The PageRank citation ranking: Bringing order to the web,” Stanford University, Stanford, CA, Tech. Rep., Jan. 1998.

J. Pattanaphanchai, ”DC Proposal: Evaluating Trustworthiness of Web Content Using Semantic Web Technologies,” in The Semantic Web ISWC: 10th International Semantic Web Conference, Berlin, Heidelberg, 2011, pp. 325-332.

E. Rajabi, S. Sanchez, and M. A. Sicilia, ”Analyzing broken links on the web of data: An experiment with DBpedia,” Journal of the Association for Information Science and Technology, vol. 65, no. 8, pp. 1721-1727, 2014.

M. E. Vidal, et al., ”Retos para el Procesamiento Semántico de Datos Enlazados en la Nube de los Datos Abiertos Enlazados,” Revista Venezolana de Computación, vol. 1, no. 1, pp. 34-42, 2014.

LinkedData.Center, What is a Dataset? 2017. [Online]. Available: http://sites.linkeddata.center/help/business/starter-kit/dataset. Accessed on: July 20, 2017.

A. Ahmad, R. Troncy, and A. Senart, ”What is up LOD Cloud? Observing the State of Linked Open Data Cloud Metadata,” in International Semantic Web Conference, Portorož, Slovenia, 2015, pp. 247-254.

T. Berners, Linked Data, 2009. [Online]. Available: https://www.w3.org/DesignIssues/LinkedData.html, Accessed on: May 20, 2017.

Semantic Web,SPARQL Endpoint, 2011. [Online]. Available: http://semanticweb.org/wiki/SPARQL_Endpoint.html. Accessed on: June 20, 2017.

Europeana pro, Europeana SPARQL Endpoint, 2016. [Online]. Available: https://pro.europeana.eu/post/europeana-sparql-endpoint. Accessed on: July 12, 2017.

Y. Kabutoya, R. Sumi, T. Iwata, T. Uchiyama, and T. Uchiyama, ”A Topic Model for Recommending Movies via Linked Open Data,” in IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, Macau, China, 2012, pp. 625-630.

Y. Gil and D. Artz, ”Towards content trust of web resources,” Web Semantics: Science, Services and Agents on the World Wide Web, vol. 5, no. 4, pp. 227-239, 2007.

P. Vandenbussche, A. Hogan, J. Umbrich, and C. Buil, ”SPARQL: A Gateway to Open Data on the Web?” ERCIM NEWS Linked Open Data, vol. 1, no. 96, pp. 31-31, 2014.

VisualDataWeb, LD-VOWL: Visualizing Linked Data Endpoints, 2016. [Online]. Available: http://vowl.visualdataweb.org/ldvowl.html. Accessed on: May 16, 2017.

S. Lohmann, F. Haag, and S. Negru, Towards a Visual Notation for OWL: A Short Summary of VOWL, 2013. [Online]. Available: https://pdfs.semanticscholar.org/2c26/fdeac23c325f2832ed786a0beba656605522.pdf. Accessed on: June 28, 2017.

AIMS Agricultural Information Management Standards, VOWL: Visual Notation for OWL Ontologies, 2014. [Online]. Available:http://aims.fao.org/community/general-information/blogs/vowl-visual-notation-owl-ontologies. Accessed on: July 8, 2017.

T. Ramdane and S. Bachir, OWL Visual Notation and Editor, 2014. [Online]. Available: http://www.univ-tebessa.dz/fichiers/ouargla/icaiit2014_submission_217.pdf. Accessed on: July 9, 2017.

M. Weise, S. Lohmann, and F. Haag, ”LD-VOWL: Extracting and Visualizing Schema Information for Linked Data,” in 2nd International Workshop on Visualization and Interaction for Ontologies and Linked Data, Kobe, Japón, 2016, pp. 120-127.

S. Lohmann, S. Negru, F. Haag, and T. Ertl, Visualizing Ontologies with VOWL. [Online]. Available: http://www.semantic-web-journal.net/system/files/swj1114.pdf. Accesed on: July 23, 2017.

D. Bold, S. Lohmann, and S. Negru, Protégé VOWL: VOWL Plugin for Protégé, 2014. [Online]. Available: http://vowl.visualdataweb.org/protegevowl.html. Accessed on: July 23,2017.

M. D. Rojas, E. Zuluaga, and J. Ochoa, ”Propuesta de medición de la confianza en la información utilizando un sistema difuso,” Revista Ingenierías Universidad de Medellín, vol. 10, no. 19, pp. 113-123, 2011.

S. Javanmardi, M. Shojafar, S. Shariatmadari, and S. S. Ahrabi, ”FR TRUST: A Fuzzy Reputation Based Model for Trust Management in Semantic P2P Grids,” International Journal of Grid and Utility Computing, vol. 6, no. 1, pp. 57-66, 2014.

I. Jacobi, L. Kagal, and, A. Khandelwal, ”Rule-Based Trust Assessment on the Semantic Web,” in International Workshop on Rules and Rule Markup Languages for the Semantic Web, Barcelona, Spain, 2011, pp. 227-241.

S. Kamal, S. F. Nimmy, and L. Chowdhury, ”Fuzzy Logic over Ontological Annotation and Classification for Spatial Feature Extraction,” International Journal of Computer Applications, vol. 41, no. 6, pp. 18-22, 2012.

R. Aringhieri, E. Damiani, S. De Capitani, S. Paraboschi, and P. Samarati, ”Fuzzy Techniques for Trust and Reputation Management in Anonymous Peer-to-Peer Systems,” Journal of the American Society for Information Science and Technology, vol. 57, no. 4, pp. 528-573, 2006.

S. Lohmann, F. Haag, and S. Negru, ”Towards a Visual Notation for OWL: A Brief Summary of VOWL,” in International Experiences and Directions Workshop on OWL, Bologna, Italy, 2016, pp. 143-153.

W3C, OWL Web Ontology Language Overview, 2004. [Online]. Available: https://www.w3.org/TR/owl-features/. Accessed on: July 25, 2017.

31. GitHub, Inc, LD-VOWL, 2016. [Online] Available: https://github.com/VisualDataWeb/LD-VOWL. Accessed on: April 25, 2017.

J. M. Mendel, ”Fuzzy logic systems for engineering: a tutorial,”Proceedings of the IEEE, vol. 83, no.3, pp. 345-377, 1995.

A. Peregrín, ”Integración de Operadores de Implicación y Métodos de Defuzzificacion en sistemas Basados en Reglas Difusas. Implementación, análisis y Caracterización,” M.S. thesis, Universidad de Granada, Granada, España, 2000.

C. Bizer, Z. Miklos, J. Calbimonte, A. Moraru, and G. Flouris, D2.1 Conceptual model and best practices for high-quality metadata publishing, 2012. [Online]. Available: http://planet-datawiki.sti2.at/uploads/archive/d/d7/20120217160352%21D2.1.pdf. Accessed on: May l5, 2017.

VOILA 2016 Visualization and Interaction for Ontologies and Linked Data, Visualization for Ontology Evolution, 2016. [Online] Available: http://voila2016.visualdataweb.org/VOILA2016_proceedings.pdf. Accessed on: May 30, 2017.




How to Cite

Herrera-Cubides, J. F., Gaona-García, P. A., Alonso-Echeverri, J. I., Riaño-Vargas, K. A., & Gómez-Acosta, A. C. (2018). A fuzzy logic system to evaluate levels of trust on linked open data resources. Revista Facultad De Ingeniería Universidad De Antioquia, (86), 40–53. https://doi.org/10.17533/udea.redin.n86a06