Evaluation of stresses and deflections in expanded metal plates subjected to transverse loading

Keywords: Expanded metal, deflection, finite element analysis, energy absorption

Abstract

The implementation of rigid and lightweight structures that perform support functions has their main field of application in the industrial sector. These structures must satisfy all requirements of security and comfort, besides being profitable for the company using them, at the time of procurement and maintenance. This paper aims at studying the behavior of expanded metal meshes subject to transverse loading, determining the deflections produced by this type of loading. In this study, design recommendations for the use and installation of expanded metal meshes provided by Standard EMMA 557-15 are considered. Therefore, a finite element model is developed considering linear behavior of material and geometry, employing the commercial software ANSYS. Solid elements are used in the generation of the computational model where metal sheets are subject to transverse loads to determine the deflections in the mesh. Next, the influence of the following parameters is evaluated: material properties, span between structural supports, magnitude and type of the transverse load (concentrated or uniform), size of pattern, and orientation of the mesh. Finally, numerical results show that deflections found in expanded metal meshes are clearly affected by the aforementioned parameters.

|Abstract
= 393 veces | PDF
= 555 veces|

Downloads

Download data is not yet available.

Author Biographies

José Angel Matute-Peaspán, Universidad Simón Bolívar
Departamento de Mecánica
Gabriela Martínez-Bordes, Universidad Simón Bolívar
Departamento de Mecánica
Carlos Alberto Graciano-Gallego, Universidad Nacional de Colombia
Departamento de Ingeniería Civil, Facultad de Minas
Nelson Adolfo Loaiza-Ramones, Universidad Nacional de Colombia

Departamento de Ingeniería Civil, Facultad de Minas

References

R. V. Sánchez, “Determinación de las propiedades mecánicas de láminas de metal expandido,” M.S. thesis, Universidad Simón Bolívar, Caracas, Venezuela, 2005.

G. Martínez, C. A. Graciano, E. Casanova, and O. Pelliccioni, “Estudio del comportamiento estructural de mallas de metal expandido sometidas a tracción,” Boletín Técnico, vol. 46, no. 2, pp. 37–52, Aug. 2008.

D. J. Smith, C. A. Graciano, and G. N. Aparicio, “Energy absorption capacity of expanded metal meshes subjected to tensile loading,” Rev.fac.ing.univ. Antioquia, no. 77, pp. 48–53, Oct. 2015.

C. A. Graciano, G. Martínez, and D. J. Smith, “Experimental investigation on the axial collapse of expanded metal tubes,” Thin-Walled Struct., vol. 47, no. 8-9, pp. 953–961, Aug. 2009.

C. A. Graciano, D. J. Smith, and G. N. Aparicio, “An empirical method for the estimation of yield strength on bonds and strands of expanded metal meshes,” Rev.fac.ing.univ. Antioquia, no. 74, pp. 132–142, Jan. 2015.

A. G. Jahromi and H. Hatami, “Energy absorption performance on multilayer expanded metal tubes under axial impact,” Thin-Walled Struct., vol. 116, pp. 1–11, Jul. 2017.

C. A. Graciano, H. Borges, G. Martínez, and P. Teixeira, “Axial crushing of concentric expanded metal tubes under impact loading,” Lat. Am. J. Solids Struct., vol. 14, no. 5, pp. 874–885, Jul. 2017.

Standards For Expanded Metal, EMMA 557-15, 2015.

Ansys Release 16.2 Elements Reference, ANSYS, USA, 2015.

Published
2018-06-19