Evaluation of stresses and deflections in expanded metal plates subjected to transverse loading
DOI:
https://doi.org/10.17533/udea.redin.n87a07Keywords:
expanded metal, deflection, finite element analysis, energy absorptionAbstract
The implementation of rigid and lightweight structures that perform support functions has their main field of application in the industrial sector. These structures must satisfy all requirements of security and comfort, besides being profitable for the company using them, at the time of procurement and maintenance. This paper aims at studying the behavior of expanded metal meshes subject to transverse loading, determining the deflections produced by this type of loading. In this study, design recommendations for the use and installation of expanded metal meshes provided by Standard EMMA 557-15 are considered. Therefore, a finite element model is developed considering linear behavior of material and geometry, employing the commercial software ANSYS. Solid elements are used in the generation of the computational model where metal sheets are subject to transverse loads to determine the deflections in the mesh. Next, the influence of the following parameters is evaluated: material properties, span between structural supports, magnitude and type of the transverse load (concentrated or uniform), size of pattern, and orientation of the mesh. Finally, numerical results show that deflections found in expanded metal meshes are clearly affected by the aforementioned parameters.
Downloads
References
R. V. Sánchez, “Determinación de las propiedades mecánicas de láminas de metal expandido,” M.S. thesis, Universidad Simón Bolívar, Caracas, Venezuela, 2005.
G. Martínez, C. A. Graciano, E. Casanova, and O. Pelliccioni, “Estudio del comportamiento estructural de mallas de metal expandido sometidas a tracción,” Boletín Técnico, vol. 46, no. 2, pp. 37–52, Aug. 2008.
D. J. Smith, C. A. Graciano, and G. N. Aparicio, “Energy absorption capacity of expanded metal meshes subjected to tensile loading,” Rev.fac.ing.univ. Antioquia, no. 77, pp. 48–53, Oct. 2015.
C. A. Graciano, G. Martínez, and D. J. Smith, “Experimental investigation on the axial collapse of expanded metal tubes,” Thin-Walled Struct., vol. 47, no. 8-9, pp. 953–961, Aug. 2009.
C. A. Graciano, D. J. Smith, and G. N. Aparicio, “An empirical method for the estimation of yield strength on bonds and strands of expanded metal meshes,” Rev.fac.ing.univ. Antioquia, no. 74, pp. 132–142, Jan. 2015.
A. G. Jahromi and H. Hatami, “Energy absorption performance on multilayer expanded metal tubes under axial impact,” Thin-Walled Struct., vol. 116, pp. 1–11, Jul. 2017.
C. A. Graciano, H. Borges, G. Martínez, and P. Teixeira, “Axial crushing of concentric expanded metal tubes under impact loading,” Lat. Am. J. Solids Struct., vol. 14, no. 5, pp. 874–885, Jul. 2017.
Standards For Expanded Metal, EMMA 557-15, 2015.
Ansys Release 16.2 Elements Reference, ANSYS, USA, 2015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.