Diseño de disipadores de calor pasivo para semiconductores de potencia con la curva de Cesaro

Autores/as

  • Luis Carlos Ruiz-Cardenas Universidad Militar Nueva Granada
  • Luis Eduardo Llano-Sánchez Universidad Militar Nueva Granada
  • Darío Manuel Domínguez-Cajeli Universidad Militar Nueva Granada
  • Martha Cecilia Melo de Alonso Universidad Militar Nueva Granada
  • Carolina González-Rodríguez Universidad Militar Nueva Granada

DOI:

https://doi.org/10.17533/udea.redin.20200162

Palabras clave:

análisis térmico, disipador de calor, curva de Cesaro, ANSYS, semiconductores de potencia

Resumen

En el diseño de circuitos electrónicos se destaca la etapa de potencia, la cual se encarga de aumentar las características de una señal, como la corriente y el voltaje, para un apropiado funcionamiento del equipo a desarrollar. Sin embargo, esta etapa está conformada por elementos como los transistores, los cuales pueden presentar un bajo rendimiento, debido al aumento indeseado de temperatura, como consecuencia de alcanzar la potencia deseada. Para mitigar la perdida de potencia y con ello, la elevación de temperatura, se propone el manejo de disipadores de calor, con el propósito de mantener el trabajo de la etapa de potencia en un nivel estable y evitar fracturas térmicas dentro del circuito. En el siguiente trabajo, se exponen los resultados obtenidos del análisis térmico en elementos finitos del disipador de calor con aletas en forma de curva de Cesaro, para semiconductores de potencia, lo cual evidenció el aumento en el flujo de calor, respecto a los comerciales y de este modo, facilitar la evacuación de calor para el acondicionamiento de la tensión y/o corriente.

|Resumen
= 810 veces | PDF (ENGLISH)
= 410 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Luis Carlos Ruiz-Cardenas, Universidad Militar Nueva Granada

Facultad de Ingeniería, Programa de Ingeniería Civil.

Luis Eduardo Llano-Sánchez, Universidad Militar Nueva Granada

Facultad de Ingeniería, Programa de Ingeniería Civil, Profesor.

Darío Manuel Domínguez-Cajeli, Universidad Militar Nueva Granada

Facultad de Ciencias Básicas y aplicadas, Departamento de Matemáticas, Profesor.

Martha Cecilia Melo de Alonso, Universidad Militar Nueva Granada

Facultad de Ciencias Básicas y aplicadas, Departamento de Matemáticas.

Carolina González-Rodríguez, Universidad Militar Nueva Granada

Facultad de Ciencias Básicas y aplicadas, Departamento de Matemáticas.

Citas

S. Sakurai and et al, “Design and Development of Lower Divertor for JT-60SA,” in International Conferences on Fusion Energy, Naka, Korea, 2010, pp. 1–7.

H. Chi, J. Jang, H. Yeh, and M. Wu, “The heat transfer characteristics of liquid cooling heatsink containing microchannels,” International Journal of Heat and Mass Transfer, vol. 54, no. 1, January 15 2011. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.066

V. Pickert, H. Cheng, L. Pritchard, and D. J. Atkinson, “An experimental and computational study of water cooled heatsinks for HEV’s,” in 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010), Brighton, United Kingdom, 2010.

C. C. Davidson, R. M. Preedy, J. Cao, C. Zhou, and J. Fu, “Ultrahigh power thyristor valves for HVDC in developing countries,” in 9th IET International Conference on AC and DC Power Transmission (ACDC 2010), London, United Kingdom, 2010.

X. Zhou and et al, “High-frequency EMC design verification through full-wave simulations and measurements in Reverberation Chamber,” in 2013 IEEE International Symposium on Electromagnetic Compatibility, Denver, Colorado, 2013, pp. 299–305.

A. P. Van de Ven, “Lighting device with flexibly coupled heatsinks,”Patent WO2 012 109 060A3, Nov. 1, 2012.

M. D. McClure and A. J. McClure, “Slotted heatsinks and systems and methods related thereto,” U.S. Patent US20 140 049 964A1, Feb. 20, 2014.

K. T. Park, H. J. Kim, J. Yoo, M. G. Lee, and D. Kim, “Experimentalstudy on effect of inclination angle on natural convection fromcylindrical heatsinks with plate fins,” Transactions of the KoreanSociety of Mechanical Engineers B, vol. 39, no. 4, April 2015. [Online].Available: https://doi.org/10.3795/KSME-B.2015.39.4.343

S. Tian, T. M. Cipolla, and P. W. Coteus, “Coined-sheet-metaleatsinks for closely packaged heat-producing devices such as dualin-line memory modules (DIMMs),” U.S. Patent US7 715 197B2, May11, 2010.

Y. Sun, F. Wu, and K. Chen, “Semiconductor device packages withintegrated heatsinks,” U.S. Patent US20 110 049 704A1, Mar. 3, 2011.

E. Farsad, S. P. Abbasi, and M. S. Zabihi, “Fluid flow and heat transfer in a novel microchannel heat sink partially filled with metal foam medium,” Journal of Thermal Science and Engineering Applications, vol. 6, no. 2, June 2014. [Online]. Available: https://doi.org/10.1115/1.4025823

C. L. Belady, E. C. Peterson, S. L. Harris, S. A. Belson, and G. W. Williams, “Redundant power beneath circuit board,” U.S. Patent US7 791 889B2, Sep. 7, 2010.

X. He and T. H. Hubing, “Mitigation of unintentional radiated emissions from tall VLSI heatsinks using ground posts,” IEEE Transactions on Electromagnetic Compatibility, vol. 55, no. 6, May 13 2013. [Online]. Available: https://doi.org/10.1109/TEMC.2013.2259629

J. J. Casanova, J. A. Taylor, and J. Lin, “Design of a 3-D Fractal Heatsink Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 9, November 9 2010. [Online]. Available: https://doi.org/10.1109/LAWP.2010.2091104

K. Horiuchi, A. Nishihara, and K. Sugimura, “Multi-objective optimization of water-cooled pinfin eatsinks,” International Journal of Heat and Mass Transfer, vol. 81, February 2015. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.057

C. Serafy, A. Srivastava, A. Bar-Cohen, and D. Yeung, “Design space exploration of 3D CPUs and micro-fluidic heatsinks with thermoelectrical-physical co-optimization,” in 13th International Conference on Nanochannels, Microchannels, and Minichannels, San Francisco, United States, 2015, p. 10.

G. N. Shilo, E. V. Ogrenich, and N. P. Gaponenko, “Design of finned heatsinks having minimum mass,” in International Conference Modern Problems of Radio Engineering, Telecommunications, and Computer Science,, Lviv-Slavske, Ukraine, 2010, pp. 23–27.

M. D. Neumann, “Heatsinks and a spring in a baffle slot between adjacent components,” U.S. Patent US7 821 785B1, Oct. 26, 2010.

Z. Ying and Z. Kai, “Numerical analysis and experimental research on finned heatsinks with heat pipes,” Cryogenics & Superconductivity, vol. 2, 2013.

A. S. Chernyshov, H. Yuan, B. Valcu, A. Ajan, and R. B. Acharya, “Recording media with multiple bi-layers of heatsink layer and amorphous layer for energy assisted magnetic recording system and methods for fabricating the same,” U.S. Patent US8 605 555B1, Dec. 10, 2013.

L. E. Llano, L. C. Ruiz, D. M. Domínguez, and M. C. Melo, “Design of longitudinal Finned tubes adjusted with the Cesàro curve,” Revista Facultad de Ingeniería, vol. 27, no. 48, May 2018. [Online]. Available: http://dx.doi.org/10.19053/01211129.v27.n48.2018.8104

M. Hu, D. Baleanu, and X. Yang, “One-phase problems for discontinuous heat transfer in fractal media,” Mathematical Problems in Engineering, vol. 2013, no. 3, January 2013. [Online]. Available: http://dx.doi.org/10.1155/2013/358473

H. Wang, “Fast image fractal compression with graph-based image segmentation algorithm,”International Journal of Graphics, vol. 1, no. 1, pp. 19–28, Nov. 2010.

J. Pourahmadazar, C. Ghobadi, and J. Nourinia, “Novel modified pythagorean tree fractal monopole antennas for UWB applications,”IEEE Antennas and Wireless Propagation Letters, vol. 10, May 2011. [Online]. Available: http://dx.doi.org/10.1109/LAWP.2011.2154354

S. Lin and et al, “A printed log-periodic tree-dipole antenna (PLPTDA),” Progress In Electromagnetics Research M, vol. 21, January 2011. [Online]. Available: http://dx.doi.org/10.2528/PIERM11080109

A. Espinoza, F. C. Ordaz, E. Ugalde, and R. Femat, “Analysis of a model for the morphological structure of renal arterial tree: Fractal structure,” Journal of Applied Mathematics, vol. 2013, no. 12, July 2013. [Online]. Available: http://dx.doi.org/10.1155/2013/396486

F. N. Doubal and et al, “Fractal analysis of retinal vessels suggests that a distinct vasculopathy causes lacunar stroke,”Neurology, vol. 74, no. 14, April 6 2010. [Online]. Available: http://dx.doi.org/10.1212/WNL.0b013e3181d7d8b4

K. Bai, C. Meneveau, and J. Katz, “Near-wake turbulent flow structure and mixing length downstream of a fractal tree,”Boundary-Layer Meteorology, vol. 143, no. 2, May 2012. [Online]. Available: http://dx.doi.org/10.1007/s10546-012-9700-2

A. Díaz, A. Mosquera, J. L. Endrino, and P. Lafont, “Near-wake turbulent flow structure and mixing length downstream of a fractal tree,” Journal of Physics: Conference Series, vol. 252, no. 1, Dec 2010. [Online]. Available: http://dx.doi.org/10.1088/1742-6596/252/1/012003

A. Bartrés and et al, “Algorithm programming for 3D fractal dimension evaluation,” in 2016 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), Madrid, Spain, 2016, pp. 4–9.

S. Kobayashi, T. Maruyama, S. Tsurekawa, and T. Watanabe, “Grain boundary engineering based on fractal analysis for control of segregation-induced intergranular brittle fracture in polycrystalline nickel,” Acta Materialia, vol. 60, no. 17, October 2012. [Online]. Available: https://doi.org/10.1016/j.actamat.2012.07.065

K. K. Manesh, B. Ramamoorthy, and M. Singaperumal, “Numerical generation of anisotropic 3D non-Gaussian engineering surfaces with specified 3D surface roughness parameters,” Wear, vol. 268, no. 11, May 12 2010. [Online]. Available: https://doi.org/10.1016/j.wear.2010.02.005

X. L. Bin, X. Han, and S. Chen, “Fractal analysis of engineering ceramics ground surface,” Applied Surface Science, vol. 258, no. 17, June 15 2012. [Online]. Available: https://doi.org/10.1016/j.apsusc.2012.03.050

G. Serrano, “Diseño e Implementaciòn de un amplificador de audio en clase AB en un puente de baja potencia,” M.S. thesis, Escuela Técnica Superior Ingenierios Industriales Valencia, Universidad Politecnica de Valencia, Valencia, España, 2013.

Descargas

Publicado

2020-02-03

Cómo citar

Ruiz-Cardenas, L. C., Llano-Sánchez, L. E., Domínguez-Cajeli, D. M., Melo de Alonso, M. C., & González-Rodríguez, C. (2020). Diseño de disipadores de calor pasivo para semiconductores de potencia con la curva de Cesaro. Revista Facultad De Ingeniería Universidad De Antioquia, (97), 87–92. https://doi.org/10.17533/udea.redin.20200162