Cadmium (Cd) tolerance evaluation of three strains of microalgae of the genus Ankistrodesmus, Chlorella and Scenedesmus

Keywords: Pollution control, Biotechnology, Environmental engineering, Microbiology, Water pollution

Abstract

In order to assess tolerance to cadmium (Cd) for three Colombian native strains of microalgae belonging to the genus Ankistrodesmus, Chlorella and Scenedesmus the growth kinetics, the concentration of pigments, the total dry weight in media contaminated with cadmium in ranges between 0.0 - 15.0 mg L-1 , and the median lethal concentration (LC50) were determined. Additionally, for the more tolerant strains, Scenedesmus sp. and Chlorella sp., removal of Cd in media enriched with 1.0 and 7.0 mg L-1 contaminant was quantified. The study found that Scenedesmus sp was the strain that had the highest tolerance to cadmium generating 36.15 µg mL-1 of dry biomass at 3.5 mg L-1 of Cd and LC50 20.89 mg L-1 Cd after 12 days of culture. The highest percentage of removal of cadmium was 32% for Scenedesmus sp. Chlorella sp. presented good removal of Cd in cultures with low levels of metal and Ankistrodesmus sp. was the microalgae with less tolerance.

|Abstract
= 204 veces | PDF
= 171 veces|

Downloads

Download data is not yet available.

Author Biographies

Daniela Duque Granda, Universidad de Medellín

Research Group on Biodiversity, Biotechnology and Bioengineering (GRINBIO).

Carolina Montoya Vallejo, University of Antioquia

Bioprocess Group, Faculty of Engineering.

Liliana Rocío Botero Botero, Universidad de Medellín

Research Group on Biodiversity, Biotechnology and Bioengineering (GRINBIO).

References

S. Wakelin and et al. (2014, July) Mechanisms of pollution induced community tolerance in a soil microbial community exposed to cu. [Online]. Available: https://doi.org/10.1016/j.envpol.2014.03.008

P. Le Cloirec and A. Yves, “Bioremediation of heavy metals using microorganisms,” in Bioremediation of aquatic & terrestrial ecosystems, M. Fingerman and R. Nagabhushanam, Eds. Taylor y Francis Group, 2005, pp. 97–105.

C. Nagata and et al. (2016, October) Associations of urinary cadmium with circulating sex hormone levels in pre- and postmenopausal japanese women. [Online]. Available: https://doi.org/10.1016/j.envres

N. Mancera and R. Álvarez, “Estado del conocimiento de las concentraciones de mercurio y otros metales pesados en peces dulceacuícolas de colombia,” Acta Biológica Colombiana, vol. 11, no. 1, pp. 3–23, ene 2006.

T. Ha, S. Burwell, M. Goodwin, J. Noeker, and S. Heggland. (2016, October 17) Pleiotropic roles of ca+2/calmodulin-dependent pathways in regulating cadmium-induced toxicity in human osteoblast-like cell lines. [Online]. Available: https://doi.org/10.1016/j.toxlet

K. So and S. Oh. (2016, August 30) Cadmium-induced hemeoxygenase- 1 expression plays dual roles in autophagy and apoptosis and is regulated by both pkc-δ and pkb/akt activation in nrk52e kidney cells. [Online]. Available: https://doi.org/10.1016/j.tox

H. Ge and et al, “Effect of microalgae with semicontinuous harvesting on water quality and zootechnical performance of white shrimp reared in the zero water exchange system,” Aquacultural Engineering, vol. 72, pp. 70–76, 2016.

N. Abdel, A. Al-Homaidan, and I. Ibraheem. (2012, July) Microalgae and wastewater treatment. [Online]. Available: https://doi.org/10.1016/j.sjbs.2012.04.005

A. Cortés, S. Sanchez, and M. Bartolomé, “Mecanismos de resistencia a metales tóxicos (cd) bajo variaciones abióticas en microalgas,” TIP Revista Especializada en Ciencias Químico-Biológicas, vol. 21, no. 1, pp. 40–52, 2018.

M. Castañeda. (2004) Microbiología aplicada: Manual de laboratorio. Universidad Autónoma Metropolitana. México D.F. [Online]. Available: http://zaloamati.azc.uam.mx/bitstream/handle/11191/1746/Microbiologia_aplicada_manual_de_laboratorio.pdf?sequence=3&isAllowed=y

C. van Leewuen and T. Vermeire. (2007) Risk assessment of chemicals: An introduction. [Springer]. [Online]. Available: http://www.acad.bg/ebook/cheminformatics/van%20Leeuwen_Risk%20Assessment%20of%20Chemicals-An%20Introduction%202nd%20ed.pdf

Y. Pica, A. Ronco, and M. Díaz, “Ensayo de toxicidad crónica con el alga selenastrum capricornutum (pseudokirchneriella subcapitata) por el método de enumeración celular basado en el uso de hemocitómetro neubauer,” in Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelos. La experiencia en México, P. Ramírez and A. Mendoza, Eds. México, D.F.: Secretaría de Medio Ambiente y Recursos Naturales (SERMANAT), 2008, pp. 69–87.

R. Crippen and J. Perrier, “The use of neutral red and evans blue for live-dead determinations of marine plankton,” ”Stain Technology, vol. 49, no. 2, pp. 97–104, Mar. 1974.

B. Arredondo and D. Voltolina, “Determinación de peso seco y contenido orgánico e inorgánico,” in Métodos y Herramientas Analíticas en la Evaluación de la Biomasa Microalgal, B. Arredondo and D. Voltolina, Eds. La Paz, BO: Centro de Investigaciones Biológicas del Noroeste, 2007, pp. 27–30.

B. Arredondo and D. Voltolina, “Determinación de pigmentos por espectrofotometría,” in Métodos y Herramientas Analíticas en la Evaluación de la Biomasa Microalgal, B. Arredondo and D. Voltolina, Eds. La Paz, BO: Centro de Investigaciones Biológicas del Noroeste, 2007, pp. 59–68.

A. P. H. A. (APHA)”, Standard Methods for the examination of water and wastewater, 21st ed. Washington, USA: American Public Health Association, 2005.

J. Peña, F. Martínez, F. Esparza, and R. Cañizares, “Heavy metals removal by the microalga scenedesmus incrassatulus in continuous cultures,” Biosource Technology, vol. 94, no. 2, pp. 219–222, Sep. 2004.

S. Nam, W. Lee, and Y. An. (2012, June) Derivation of ecological protective concentration using the probabilistic ecological risk assessment applicable for korean water environment: (i) cadmium. [Online]. Available: https://doi.org/10.5487/TR

H. Ouyang and et al, “Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of chlorella vulgaris,” Chinese Science Bulletin, vol. 57, no. 25, pp. 3363––3370, Sep. 2012.

Z. Huang and et al. (2009, January 18) Growth-inhibitory and metal-binding proteins in chlorella vulgaris exposed to cadmium or zinc. [Online]. Available: https://doi.org/10.1016/j.aquatox

L. Andrade and et al. (2010, September) Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity. [Online]. Available: https://doi.org/10.1016/j.marpolbul

P.Terry and W. Stone, “Biosorption of cadmium and copper contaminated water by scenedesmus abundans,” ”Chemosphere, vol. 47, no. 3, pp. 249–55, Apr. 2002.

D. voet and J. Voet, Bioquímica, 3rd ed. Buenos aires, Arg.: Editorial Médica Panamericana, 2006.

A. Xiao and et al. (2016, November) Carbon and metal quantum dots toxicity on the microalgae chlorella pyrenoidosa. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2016.07.026

N. Jafari and V. Gunale, “Hydrobiological study of algae of an urban freshwater river,” Journal of Applied Sciences and Environmental Management, vol. 3, no. 2, pp. 153–158, Jun. 2006.

S. Subashchandrabose, B. Ramakrishnan, M. Megharaj, K. Venkateswarlu, and R. Naidu. (2013, january) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradationr. [Online]. Available: https: //doi.org/10.1016/j.envint.2012.10.007

L. Taiz and E. Zeiger, Fisiología vegetal, 1st ed. Castellón de la Plana, Esp.: Universitat Jaume I, 2006.

T. Pfeiffer, I. Camagajevac, D. Maronic, and I. Maksimovic, “Regulation of photosynthesis in algae under metal stress,” in Environment and Photosynthesis: A Future Prospect, V. Singh, S. Singh, R. Singh, and S. Prasad, Eds. New Delhi, IN: Studium Press, 2018, pp. 261– 286.

A. El-Naggar and M. El-Sheekh. (1998) Abolishing cadmium toxicity in chlorella vulgaris by ascorbic acid, calcium, glucose and reduced glutathione. [Online]. Available: https://doi.org/10.1016/S0269-7491(98)00089-X

A. Cantú, L. Morales, K. Arevalo, M. Garza, and I. Balderas. (2011, february 1) Cadmium(ii) and lead(ii) removal by chlorella sp. immobilized and e. coli genetically engineered with mice metallothionein i. [Online]. Available: https://doi.org/10.1557/PROC-1278-S07-P3

M. Kumar, A. Singh, and M. Sikandar. (2018, november 16) Study of sorption and desorption of cd (ii) from aqueous solution using isolated green algae chlorella vulgaris. [Online]. Available: https://doi.org/10.1007/s13201-018-0871-y

R. Lee. (2008) Phycology. [Cambridge University Press]. [Online]. Available: http://www.dbbe.fcen.uba.ar/contenido/objetos/PhycologyLee_1395342784413494.pdf

J. Voigt, A. Stolarczyk, M. Zych, P. Malec, and J. Burczyk. (2014, february) The cell-wall glycoproteins of the green alga scenedesmus obliquus. the predominant cell-wall polypeptide of scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of chlamydomonas reinhardtii. [Online]. Available: https://doi.org/10.1016/j.plantsci.2013.10.011

H. Gerken, B. Donohoe, and E. Knoshaug. (2013, january) Enzymatic cell wall degradation of chlorella vulgaris and other microalgae for biofuels production. [Online]. Available: https://doi.org/10.1007/s00425-012-1765-0l

N. Das, S. Bhattacharya, and M. Maiti. (2016, august) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene osmtp1 is promising for phytoremediation. [Online]. Available: https://doi.org/10.1016/j.plaphy.2016.04.049

C. Cervantes and et al, “Interacciones microbianas con metales pesados,” Revista Latinoamericana de Microbiología, vol. 48, no. 2, pp. 203–210, Apr. 2006.

M. Arcos and A. Gómez. (2006, december 12) Microalgas perifíticas como indicadoras del estado de las aguas de un humedal urbano: Jaboque, Bogotá D.C., Colombia. [Online]. Available: https://doi.org/10.22490/24629448.362

Published
2019-05-28
How to Cite
Duque Granda D., Montoya Vallejo C., & Botero Botero L. R. (2019). Cadmium (Cd) tolerance evaluation of three strains of microalgae of the genus Ankistrodesmus, Chlorella and Scenedesmus. Revista Facultad De Ingeniería Universidad De Antioquia, (92), 60-69. https://doi.org/10.17533/udea.redin.20190523