Una revisión exhaustiva del impacto de las tecnologías de transmisión en la red eléctrica

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20190515

Palabras clave:

redes eléctricas inteligentes, comunicaciones inalámbricas, automatización de red

Resumen

La infraestructura eléctrica necesita la integración de tecnologías de comunicación, y en las últimas décadas el progreso ha sido significativo. Por lo tanto, este trabajo presenta los últimos avances en este tema, así como las nuevas funcionalidades. El trabajo reúne los avances en automatización, desde las primeras etapas hasta la actualidad. En este momento, Smart Grid necesita utilizar tecnologías de comunicación para permitir una respuesta a la demanda, lo que permitirá una relación diferente entre el cliente y la empresa. El trabajo presenta las arquitecturas de red existentes y los protocolos de comunicación utilizados en la red inteligente. El documento presenta los desafíos de la infraestructura eléctrica y muestra los beneficios e inconvenientes de las diferentes tecnologías de comunicación. En resumen, el documento muestra la evolución paralela de las tecnologías de comunicación y la red eléctrica, como un aspecto básico para el desarrollo de nuevas funcionalidades y servicios para todos los agentes involucrados en el sistema de generación-transmisión-distribución de energía.

|Resumen
= 468 veces | PDF (ENGLISH)
= 257 veces| | HTML (ENGLISH)
= 0 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Luis Hernández-Callejo, Universidad de Valladolid

Departamento de Ingeniería Agrícola y Forestal.

Amaia Arrinda, Universidad del País Vasco

Departamento de Ingeniería de Comunicaciones

David de la Vega, Universidad del País Vasco

Departamento de Ingeniería de Comunicaciones.

Igor Fernández, Universidad del País Vasco

Departamento de Ingeniería de Comunicaciones.

Itziar Angulo, Universidad del País Vasco

Departamento de Ingeniería de Comunicaciones.

Citas

N. Andreadou, M. Olariaga, and G. Fulli. (2016, May 17) Telecommunication technologies for smart grid projects with focus on smart metering applications. [Online]. Available: https://doi.org/10.3390/en9050375

N. Uribe, L. Hernández, D. D. la Vega, and I. Angulo. (2016, February 29) State of the art and trends review of smart metering in electricity grids. [Online]. Available: https://doi.org/10.3390/app6030068

J. A. Cortés and J. M. Idiago. (2018) Smart metering systems based on power line communications. [Springer Link]. [Online]. [Online]. Available: https://doi.org/10.1007/978-981-13-1768-2_4

K. Sharma and L. MohanSaini. (2017, January) Power-line communications for smart grid: Progress, challenges, opportunities and status. [Online]. Available: https://doi.org/10.1016/j.rser.2016.09.019

L. Hernández, A. Arrinda, D. de la Vega, I. Fernández, and I. Angulo, “The impact of transmission technologies on the evolution of the electrical grid,” ICSC-CITIES 2018. Communications in Computer and Information Science, Cham, Suiza, 2019.

B. Clinton. (1996, Jul. 17) Executive order 13010-critical infrastructure protection. [Online]. Available: https://www.hsdl.org/?view&did=1613

L. Lugaric, S. Krajcar, and Z. Simic, “Smart city — platform for emergent phenomena power system testbed simulator,” in 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe) , Oct. 2010, pp. 1–7.

T. E. D. Liacco. (2002, October) Control centers are here to stay. [Online]. Available: https://doi.org/10.1109/MCAP.2002.1046107

F. F. Wu. (1988, April) Real-time network security monitoring, assessment and optimization. [Online]. Available: https://doi.org/10.1016/0142-0615(88)90020-8

T. E. D. Liacco. (1994, October) Modern control centers and computer networking. [Online]. Available: https://doi.org/10.1109/67.318916

P. L. Joskow, “Restructuring, competition and regulatory reform in the u.s. electricity sector,” The Journal of Economic Perspectives , vol. 11, no. 3, pp. 119–138, 1997.

5G Infrastructure Association, “5g and energy,” 5G Infrastructure Association, Gaston Crommenlaan, Belgium, Tech. Rep. Version 1.0, Sep. 2015.

N. Uribe and etal. (2016, November 30) Study of unwanted emissions in the cenelec-a band generated by distributed energy resources and their influence over narrow band power line communications. [Online]. Available: https://doi.org/10.3390/en9121007

I. Fernandez and et al. (2019, February) Characterization of non-intentional emissions from distributed energy resources up to 500 khz: A case study in spain. [Online]. Available: https://doi.org/10.1016/j.ijepes.2018.08.048

A. Sendin, I. Peña, and P. Angueira, “Strategies for power line communications smart metering network deployment,” Energies , pp. 2377–2420, 2014.

N. K. Tan, Building VPNs: With IPSec and MPLS . McGraw-Hill Networking, 2003.

Prospex Research, “Europe’s top twenty power industry players 2016e,” Prospex Research Ltd, Tech. Rep., Jun. 2016.

Investigation Results on Electromagnetic Interference in the frequency range below 150 kHz , S.R. CLC/TR 50669:2017, 2017.

Signalling on low-voltage electrical installations in the frequency range 3kHzto148,5kHz-Part1: Generalrequirements,frequencybandsand electromagnetic disturbances , CENELEC - EN 50065-1, 2011.

Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-3: Methods of measurement of disturbances and immunity - Radiated disturbance measurements , CISPR 16-2-3:2016, 2016.

G. López, J. Moreno, E. Sánchez, C. Martínez, and F. Martín. (2017, August 21) Noise sources, effects and countermeasures in narrowband power-line communications networks: A practical approach. [Online]. Available: https://doi.org/10.3390/en10081238

PRIME Alliance Technical Working Group. (2012) Draft specification for powerline intelligent metering evolution. PRIME Alliance. [Online]. Available: https://www.prime-alliance.org/wp-content/uploads/2013/04/PRIME-Spec_v1.3.6.pdf

PRIME Alliance Technical Working Group. (2014) Specification for powerline intelligent metering evolution. PRIME Alliance. [Online]. Available: https://www.prime-alliance.org/wp-content/uploads/2014/10/PRIME-Spec_v1.4-20141031.pdf

L. da Rocha, L. Monteiro, M. Leme, and S. Stevan. (2018, September 11) Empirical analysis of the communication inindustrial environment based on g3-power linecommunication and influences from electrical grid. [Online]. Available: https://doi.org/10.3390/electronics7090194

I. Angulo, A. Arrinda, I. Fernández, N. Uribe, I. Arechalde, and L. Hernández, “A review on measurement techniques for non-intentional emissions above 2 khz,” in 2016 IEEE International Energy Conference (ENERGYCON) , April 2016, pp. 1–5.

M. McGranaghan and F. Goodman, “Technical and system requirements for advanced distribution automation,” in CIRED 2005 - 18 th International Conference and Exhibition on Electricity Distribution , June 2005, pp. 1–5.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.Cayirci. (2002, March 15) Wireless sensor networks: a survey. [Online]. Available: https://doi.org/10.1016/S1389-1286(01)00302-4

F.Passerini and A. M. Tonello. (2019, February 13) Smart grid monitoring using power line modems: Anomaly detection and localization. [Online]. Available: https://doi.org/10.1109/TSG.2019.2899264

F. Covrig and et al. , “Smart grid projects outlook 2014,” Publications Office of the European Union, Tech. Rep., 2014.

B. Sörries. (2013, sep.) Communication technologies and networks for smart grid and smart metering by cdg 450 connectivity special interest group (450 sig). [Online]. Available: www.cdg.org/resources/files/white_papers/CDG450SIG_Communicatio%20_Technologies_Networks_Smart_Grid_Smart_Metering_SEPT2013.pdf

UMTS Long Term Evolution (LTE) - Technology Introduction , Rohde & Schwarz, Munich, Germany, 2012.

5GPPP, “5g vision. the 5g infrastructure public private partnership: the next generation of communication networks and services,” The European Commission, Tech. Rep., Feb. 2015.

M. Shafi and et al. (2017, April 07) 5g: A tutorial overview of standards, trials, challenges, deployment, and practice. [Online]. Available: https://doi.org/10.1109/JSAC.2017.2692307

Publicado

2019-08-23

Cómo citar

Hernández-Callejo, L., Arrinda, A., de la Vega, D., Fernández, I., & Angulo, I. (2019). Una revisión exhaustiva del impacto de las tecnologías de transmisión en la red eléctrica. Revista Facultad De Ingeniería Universidad De Antioquia, (93), 82–91. https://doi.org/10.17533/udea.redin.20190515

Artículos más leídos del mismo autor/a

<< < 1 2