Biosorción de Cr(VI): efecto de la temperatura, tamaño de partícula y altura del lecho

Autores/as

  • Candelaria Nahir Tejada-Tovar Universidad de Cartagena
  • Angel Villabona-Ortíz Universidad de Cartagena
  • Rodrigo Ortega Toro Universidad de Cartagena

DOI:

https://doi.org/10.17533/udea.redin.20191149

Palabras clave:

metal, modelo matemático, termodinámica, tratamiento de aguas residuales

Resumen

El objetivo de la presente investigación fue evaluar el efecto de la temperatura, tamaño de partícula y altura de lecho del proceso de adsorción de Cromo (VI) usando cáscaras de plátano en sistema continuo. La experimentación se realizó en una columna de lecho empacado, ajustando la temperatura de alimentación de la solución con un controlador REX-C100 acoplado a un termopar tipo K. La concentración inicial de Cr (VI) fue fijada en 100 ppm, el pH en 2 y el caudal de alimentación de 0,75 mL/s. Los análisis fueron realizados por espectroscopia UV-Vis usando el método colorimétrico de la 1,5-Difenilcarbazida. La caracterización del material se realizó mediante espectrometría infrarroja por Transformadas de Fourier (FTIR), a partir de este análisis se determinó que los grupos funcionales OH y NH2 son los principales responsables de la formación de complejos con los cationes en solución. Además, se estableció que solo el tamaño de partícula es estadísticamente significativo. De acuerdo con el análisis de superficie de respuesta, las condiciones óptimas del proceso fueron 353.15 K, tamaño de partícula de 0,819 mm y altura de lecho de 67.768 mm. Del estudio termodinámico del proceso, se establece que es endotérmico y prevalece una adsorción química en el mismo. Los resultados obtenidos en el modelado del proceso sugieren que el modelo de Dosis-Respuesta se puede usar de manera confiable para escalar el proceso.

|Resumen
= 770 veces | PDF (ENGLISH)
= 560 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Candelaria Nahir Tejada-Tovar, Universidad de Cartagena

Grupo de Investigación en Diseño de procesos y Aprovechamiento de Biomasas (IDAB), Programa de Ingeniería Química, Facultad de Ingeniería.

Angel Villabona-Ortíz, Universidad de Cartagena

Grupo de Investigación en Diseño de procesos y Aprovechamiento de Biomasas (IDAB), Programa de Ingeniería Química, Facultad de Ingeniería. Profesor Titular.

Rodrigo Ortega Toro, Universidad de Cartagena

Grupo Food Packaging and Shelf Life (FP&SL), Programa de Ingeniería de Alimentos, Facultad de Ingeniería.

Citas

L. B. Tahar, M. H. Oueslati, and M. J. Abdelmageed, “Synthesis of magnetite derivatives nanoparticles and their application for the removal of chromium (VI) from aqueous solutions,” Journal of Colloid and Interface Science, vol. 512, February 15 2018. [Online]. Available: https://doi.org/10.1016/j.jcis.2017.10.044

M. Torab-Mostaedi, M. Asadollahzadeh, A. Hemmati, and A. Khosravi, “Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel,” Journal of the Taiwan Institute of Chemical Engineers, vol. 44, no. 2, March 2013. [Online]. Available: https://doi.org/10.1016/j.jtice.2012.11.001

A. R. Albis, J. D. Ortiz, and J. E. Martínez, “Remoción de cromo hexavalente de soluciones acuosas usando cáscara de yuca (Manihot esculenta): Experimentos en columna,” INGE CUC, vol. 13, no. 1, January 2017. [Online]. Available: https://doi.org/10.17981/ingecuc.13.1.2017.04

A. Albis, L. V. Cajar, and M. I. Domínguez, “Análisis cinético de la adsorción de Cr (VI) en soluciones acuosas a concentraciones de 10-20 mg/L con el uso de cáscara de yuca amarga (Manihot esculenta),” Prospectiva, vol. 13, no. 2, July 2015. [Online]. Available: hhttps://doi.org/10.15665/rp.v13i2.488

J. Zhou and et al, “Effective removal of hexavalent chromium from aqueous solutions by adsorption on mesoporous carbonmicrospheres,” Journal of Colloid and Interface Science, vol. 462, January 15 2016. [Online]. Available: https://doi.org/10.1016/j.jcis.2015.10.001

C. Tejada, A. Villabona, and M. Jiménez, “Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente,” Revista UDCA Actualidad & Divulgación Científica, vol. 20, no. 1, January 2017. [Online]. Available: https://doi.org/10.31910/rudca.v20.n1.2017.71

C. Tejada, A. Villabona, V. Caballero, J. Paternina, and C. Granados, “Optimización de parámetros para la construcción de la curva de ruptura en la adsorción de Cr (VI) sobre cáscara de cacao,” Revista UDCA Actualidad & Divulgación Científica, vol. 21, no. 1, January 2018. [Online]. Available: https://doi.org/10.31910/rudca.v21.n1.2018.675

Ministerio de Medio Ambiente y Desarrollo Sostenible. (2018, May 18) Resolución 0883. [Online]. Available: https://bit.ly/2ND6kfp

C. Tejada, A. Villabona, and L. Garcés, “Adsorción de metales pesados en aguas residuales usando materiales de origen biológico,” TecnoLógicas, vol. 18, no. 34, pp. 109–123, 2015.

A. Villabona, C. N. Tejada, and R. Ortega, “Modelling of the adsorption kinetics of chromium (VI) using waste biomaterials,” Revista Mexicana de Ingeniería Química, vol. 19, no. 1, January 2020. [Online]. Available: https://doi.org/10.24275/rmiq/IA650

Y. F. Lam, L. Y. Lee, S. J. Chua, S. S. Lim, and S. Gan, “Insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly lansium domesticum peel biosorbent,” Ecotoxicology and Environmental Safety, vol. 127, May 2016. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2016.01.003

E. Largo, M. Cortés, and H. J. Ciro, “The adsorption thermodynamics of sugarcane (Saccharum officinarum l.) powder obtained by spray drying technology,” Vitae, vol. 21, no. 3, pp. 165–177, Sep. 2014.

A. Ali, “Removal of Mn(II) from water using chemically modified plantain peels as efficient adsorbent,” Environmental Nanotechnology, Monitoring & Management, vol. 7, May 2017. [Online]. Available: https://doi.org/10.1016/j.enmm.2016.12.004

S. Singh, N. Parveen, and H. Gupta, “Adsorptive decontamination of rhodamine-B from water using plantain peel powder: A biosorbent,” Environmental Technology & Innovation, vol. 12, November 2018. [Online]. Available: https://doi.org/10.1016/j.eti.2018.09.001

B. C. Maniglia and D. R. Tapia, “Isolation and characterization of starch from babassu mesocarp,” Food Hydrocolloids, vol. 55, April 2016. [Online]. Available: https://doi.org/10.1016/j.foodhyd.2015.11.001

K. S. Padmavathy, G. Madhu, and P. Haseen, “A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticles,” Procedia Technology, vol. 24, 2016. [Online]. Available: https://doi.org/10.1016/j.protcy.2016.05.127

Y. Wu and et al, “Functionalized agricultural biomass as a low-cost adsorbent: utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems,” Biochemical Engineering Journal, vol. 105, January 15 2016. [Online]. Available: https://doi.org/10.1016/j.bej.2015.08.017

D. S. Malik, C. K. Jain, and A. K. Yadav, “Heavy metal removal by fixedbed column–a review,” ChemBioEng Reviews, vol. 5, no. 3, May 28 2018. [Online]. Available: https://doi.org/10.1002/cben.201700018

S. Srivastava, S. B. Agrawal, and M. K. Mondal, “Fixed bed column adsorption of Cr(VI) from aqueous solution using nanosorbents derived from magnetite impregnated phaseolus vulgaris husk,” Environmental Progress & Sustainable Energy, vol. 38, no. s1, May 4 2019. [Online]. Available: https://doi.org/10.1002/ep.12918

A. Abdolali and et al, “Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column,” Bioresource Technology, vol. 229, April 2017. [Online]. Available: https://doi.org/10.1016/j.biortech.2017.01.016

F. Granados, J. Bonifacio, and J. Serrano, “Estudio cinético y termodinámico de la adsorción de Cr (VI) presente en solución acuosa sobre fosfato de calcio sintético,” Revista de la Sociedad Química del Perú, vol. 75, no. 2, pp. 201–212, Apr. 2009.

M. K. Rai and et al, “Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from almond shell: kinetics, equilibrium and thermodynamics study,” Journal of Water Supply: Research and Technology-Aqua, vol. 67, no. 8, December 1 2018. [Online]. Available: https://doi.org/10.2166/aqua.2018.047

N. Flores, M. J. Solache, R. M. Gomez, and B. Garcia, “Estudio de adsorción competitiva de cobre y zinc en solución acuosa utilizando Q/PVA/EGDE,” Revista Mexicana de Ingeniería Química, vol. 14, no. 3, pp. 801–811, Sep. 2015.

A. Abdolali and et al, “A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study,” Science of The Total Environment, vol. 542, January 15 2016. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2015.10.095

E. Oguz and M. Ersoy, “Biosorption of cobalt(II) with sunflower biomass from aqueous solutions in a fixed bed column and neural networks modeling,” Ecotoxicology and Environmental Safety, vol. 99, January 2014. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2013.10.004

J. S. Valencia and G. C. Castellar, “Predicción de las curvas de ruptura para la remoción de plomo (II) en disolución acuosa sobre carbón activado en una columna empacada,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 66, pp. 141–158, Mar. 2013.

Z. Aksu and E. Kabasakal, “Batch adsorption of 2, 4- dichlorophenoxy-acetic acid (2, 4-D) from aqueous solution by granular activated carbon,” Separation and Purification Technology, vol. 35, no. 3, March 2004. [Online]. Available: https://doi.org/10.1016/S1383-5866(03)00144-8

A. Mishra, B. D. Tripathi, and A. K. Rai, “Packed-bed column biosorption of chromium(VI) and nickel(II) onto fenton modified Hydrilla verticillata dried biomass,” Ecotoxicology and environmental safety, vol. 132, October 2016. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2016.06.026

N. Sivarajasekar, N. Mohanraj, R. Baskar, and S. Sivamani, “Fixed-bed adsorption of ranitidine hydrochloride onto microwave assisted—activated Aegle marmelos correa fruit shell: statistical optimization and breakthrough modelling,” Arabian Journal for Science and Engineering, vol. 43, no. 5, pp. 2205–2215, May 2018.

M. A. Martín, F. Hernáinz, G. Blázquez, G. Tenorio, and M. Calero, “Sorption of Cr (VI) onto olive stone in a packed bed column: Prediction of kinetic parameters and breakthrough curves,” Journal of Environmental Engineering, vol. 136, no. 12, December 2010. [Online]. Available: https://doi.org/10.1061/(ASCE)EE.1943-7870.0000281

S. V. Gokhale, K. K. Jyoti, and S. S. Lele, “Modeling of chromium (VI) biosorption by immobilized Spirulina platensis in packed column,” Journal of Hazardous Materials, vol. 170, no. 2-3, October 30 2009. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2009.05.005

A. B. Albadarin and et al, “Modelling and fixed bed column adsorption of Cr(VI) onto orthophosphoric acid-activated lignin,” Chinese Journal of Chemical Engineering, vol. 20, no. 3, June 2012. [Online]. Available: https://doi.org/10.1016/S1004-9541(11)60208-5

K. M. Sreenivas, M. B. Inarkar, S. V. Gokhale, and S. S. Lele, “Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies,” Journal of Environmental Chemical Engineering, vol. 2, no. 1, March 2014. [Online]. Available: https://doi.org/10.1016/j.jece.2014.01.017

J. A. Lara, C. Tejada, A. Villabona, A. Arrieta, and C. Granados, “Adsorción de plomo y cadmio en sistema continuo de lecho fijo sobre residuos de cacao,” Revista Ion, vol. 29, no. 2, December 15 2016. [Online]. Available: https://doi.org/10.18273/revion.v29n2-2016009

L. M. Vera and et al, “Modelado en columna de lecho fijo para la bioadsorción de cd2+ y pb2+ con cáscara de cacao,” Revista internacional de contaminación ambiental, vol. 34, no. 4, November 2018. [Online]. Available: http://dx.doi.org/10.20937/rica.2018.34.04.05

A. Nam and et al, “Evaluation of amine-functionalized acrylic ion exchange fiber for chromium(VI) removal using flow-through experiments modeling and real wastewater,” Journal of Industrialand Engineering Chemistry, vol. 66, October 25 2018. [Online]. Available: https://doi.org/10.1016/j.jiec.2018.05.029

S. Rasaki, B. Zhang, S. Liu, T. Thomas, and M. Yang, “Nanourchin ZnO@TiCN composites for Cr (VI) adsorption and thermochemical remediation,” Journal of Environmental Chemical Engineering, vol. 6, no. 4, May 2018. [Online]. Available: https://doi.org/10.1016/j.jece.2018.05.040

W. Zhang and et al, “Hybrid functionalized chitosan-Al2O3@SiO2 composite for enhanced Cr (VI) adsorption,” Chemosphere, vol. 203, July 2018. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2018.03.188

S. Guiza, “Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel,” Ecological Engineering, vol. 99, February 2017. [Online]. Available: https://doi.org/10.1016/j.ecoleng.2016.11.043

E. Malkoc and Y. Nuhoglu, “Determination of kinetic and equilibrium parameters of the batch adsorption of Cr (VI) onto waste acorn of Quercus ithaburensi,” Chemical Engineering and Processing: Process Intensification, vol. 46, no. 10, October 2007. [Online]. Available: https://doi.org/10.1016/j.cep.2007.05.007

S. Rangabhashiyam and N. Selvaraju, “Efficacy of unmodified and chemically modified Swietenia mahagoni shells for the removal of hexavalent chromium from simulated wastewater,” Journal of Molecular Liquids, vol. 209, September 2015. [Online]. Available: https://doi.org/10.1016/j.molliq.2015.06.033

K. C. Bedin, A. C. Martins, A. L. Cazetta, O. Pezoti, and V. C. Almeida, “KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal,” Chemical Engineering Journal, vol. 286, February 15 2016. [Online]. Available: https://doi.org/10.1016/j.cej.2015.10.099

Descargas

Publicado

2020-02-21

Cómo citar

Tejada-Tovar, C. N., Villabona-Ortíz, A., & Ortega Toro, R. (2020). Biosorción de Cr(VI): efecto de la temperatura, tamaño de partícula y altura del lecho. Revista Facultad De Ingeniería Universidad De Antioquia, (96), 78–86. https://doi.org/10.17533/udea.redin.20191149

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 > >> 

También puede {advancedSearchLink} para este artículo.