Cr(VI) biosorption: effect of temperature, particle size and bed height

Authors

  • Candelaria Nahir Tejada-Tovar University of Cartagena
  • Angel Villabona-Ortíz University of Cartagena
  • Rodrigo Ortega Toro University of Cartagena

DOI:

https://doi.org/10.17533/udea.redin.20191149

Keywords:

metal, mathematical model, thermodynamic, wastewater treatment

Abstract

The present work aimed to evaluate the effect of temperature, particle size and bed height of the chromium (VI) adsorption process using plantain peels in a continuous system. The experiment was carried out on a packed bed column, adjusting the feed temperature of the solution with a REX-C100 controller coupled to a type K thermocouple. The initial concentration of Cr (VI) was set at 100 ppm, the pH at 2 and the feed rate of 0.75 mL/s. The analyses were performed by UV-Vis spectroscopy using the colourimetric method of 1.5-diphenylcarbazide. The material was characterized by infrared spectrometry by Fourier Transforms (FTIR), from this analysis, it was determined that the OH and NH2 functional groups are the main responsible for the formation of complexes with the cations in solution. Also, it was established that only the particle size is statistically significant. According to the response surface analysis, the optimum conditions of the process were 353.15 K, a particle size of 0.819 mm and a bed height of 67.768 mm. From the thermodynamic study of the process, it is established that it is endothermic and the chemical adsorption prevails in it. The results obtained in the process modelling suggest that Dose-Response can be used reliably to scale the process.

|Abstract
= 860 veces | PDF
= 600 veces| | HTML
= 0 veces|

Downloads

Download data is not yet available.

Author Biographies

Candelaria Nahir Tejada-Tovar, University of Cartagena

Research Group in Process Design and Biomass Use (IDAB), Chemical Engineering Program, Faculty of Engineering.

Angel Villabona-Ortíz, University of Cartagena

Research Group in Process Design and Biomass Use (IDAB), Chemical Engineering Program, Faculty of Engineering. Professor.

Rodrigo Ortega Toro, University of Cartagena

Group of Food Packaging and Shelf Life (FP&SL), Food Engineering Program, Faculty of Engineering.

References

L. B. Tahar, M. H. Oueslati, and M. J. Abdelmageed, “Synthesis of magnetite derivatives nanoparticles and their application for the removal of chromium (VI) from aqueous solutions,” Journal of Colloid and Interface Science, vol. 512, February 15 2018. [Online]. Available: https://doi.org/10.1016/j.jcis.2017.10.044

M. Torab-Mostaedi, M. Asadollahzadeh, A. Hemmati, and A. Khosravi, “Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel,” Journal of the Taiwan Institute of Chemical Engineers, vol. 44, no. 2, March 2013. [Online]. Available: https://doi.org/10.1016/j.jtice.2012.11.001

A. R. Albis, J. D. Ortiz, and J. E. Martínez, “Remoción de cromo hexavalente de soluciones acuosas usando cáscara de yuca (Manihot esculenta): Experimentos en columna,” INGE CUC, vol. 13, no. 1, January 2017. [Online]. Available: https://doi.org/10.17981/ingecuc.13.1.2017.04

A. Albis, L. V. Cajar, and M. I. Domínguez, “Análisis cinético de la adsorción de Cr (VI) en soluciones acuosas a concentraciones de 10-20 mg/L con el uso de cáscara de yuca amarga (Manihot esculenta),” Prospectiva, vol. 13, no. 2, July 2015. [Online]. Available: hhttps://doi.org/10.15665/rp.v13i2.488

J. Zhou and et al, “Effective removal of hexavalent chromium from aqueous solutions by adsorption on mesoporous carbonmicrospheres,” Journal of Colloid and Interface Science, vol. 462, January 15 2016. [Online]. Available: https://doi.org/10.1016/j.jcis.2015.10.001

C. Tejada, A. Villabona, and M. Jiménez, “Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente,” Revista UDCA Actualidad & Divulgación Científica, vol. 20, no. 1, January 2017. [Online]. Available: https://doi.org/10.31910/rudca.v20.n1.2017.71

C. Tejada, A. Villabona, V. Caballero, J. Paternina, and C. Granados, “Optimización de parámetros para la construcción de la curva de ruptura en la adsorción de Cr (VI) sobre cáscara de cacao,” Revista UDCA Actualidad & Divulgación Científica, vol. 21, no. 1, January 2018. [Online]. Available: https://doi.org/10.31910/rudca.v21.n1.2018.675

Ministerio de Medio Ambiente y Desarrollo Sostenible. (2018, May 18) Resolución 0883. [Online]. Available: https://bit.ly/2ND6kfp

C. Tejada, A. Villabona, and L. Garcés, “Adsorción de metales pesados en aguas residuales usando materiales de origen biológico,” TecnoLógicas, vol. 18, no. 34, pp. 109–123, 2015.

A. Villabona, C. N. Tejada, and R. Ortega, “Modelling of the adsorption kinetics of chromium (VI) using waste biomaterials,” Revista Mexicana de Ingeniería Química, vol. 19, no. 1, January 2020. [Online]. Available: https://doi.org/10.24275/rmiq/IA650

Y. F. Lam, L. Y. Lee, S. J. Chua, S. S. Lim, and S. Gan, “Insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly lansium domesticum peel biosorbent,” Ecotoxicology and Environmental Safety, vol. 127, May 2016. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2016.01.003

E. Largo, M. Cortés, and H. J. Ciro, “The adsorption thermodynamics of sugarcane (Saccharum officinarum l.) powder obtained by spray drying technology,” Vitae, vol. 21, no. 3, pp. 165–177, Sep. 2014.

A. Ali, “Removal of Mn(II) from water using chemically modified plantain peels as efficient adsorbent,” Environmental Nanotechnology, Monitoring & Management, vol. 7, May 2017. [Online]. Available: https://doi.org/10.1016/j.enmm.2016.12.004

S. Singh, N. Parveen, and H. Gupta, “Adsorptive decontamination of rhodamine-B from water using plantain peel powder: A biosorbent,” Environmental Technology & Innovation, vol. 12, November 2018. [Online]. Available: https://doi.org/10.1016/j.eti.2018.09.001

B. C. Maniglia and D. R. Tapia, “Isolation and characterization of starch from babassu mesocarp,” Food Hydrocolloids, vol. 55, April 2016. [Online]. Available: https://doi.org/10.1016/j.foodhyd.2015.11.001

K. S. Padmavathy, G. Madhu, and P. Haseen, “A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticles,” Procedia Technology, vol. 24, 2016. [Online]. Available: https://doi.org/10.1016/j.protcy.2016.05.127

Y. Wu and et al, “Functionalized agricultural biomass as a low-cost adsorbent: utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems,” Biochemical Engineering Journal, vol. 105, January 15 2016. [Online]. Available: https://doi.org/10.1016/j.bej.2015.08.017

D. S. Malik, C. K. Jain, and A. K. Yadav, “Heavy metal removal by fixedbed column–a review,” ChemBioEng Reviews, vol. 5, no. 3, May 28 2018. [Online]. Available: https://doi.org/10.1002/cben.201700018

S. Srivastava, S. B. Agrawal, and M. K. Mondal, “Fixed bed column adsorption of Cr(VI) from aqueous solution using nanosorbents derived from magnetite impregnated phaseolus vulgaris husk,” Environmental Progress & Sustainable Energy, vol. 38, no. s1, May 4 2019. [Online]. Available: https://doi.org/10.1002/ep.12918

A. Abdolali and et al, “Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column,” Bioresource Technology, vol. 229, April 2017. [Online]. Available: https://doi.org/10.1016/j.biortech.2017.01.016

F. Granados, J. Bonifacio, and J. Serrano, “Estudio cinético y termodinámico de la adsorción de Cr (VI) presente en solución acuosa sobre fosfato de calcio sintético,” Revista de la Sociedad Química del Perú, vol. 75, no. 2, pp. 201–212, Apr. 2009.

M. K. Rai and et al, “Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from almond shell: kinetics, equilibrium and thermodynamics study,” Journal of Water Supply: Research and Technology-Aqua, vol. 67, no. 8, December 1 2018. [Online]. Available: https://doi.org/10.2166/aqua.2018.047

N. Flores, M. J. Solache, R. M. Gomez, and B. Garcia, “Estudio de adsorción competitiva de cobre y zinc en solución acuosa utilizando Q/PVA/EGDE,” Revista Mexicana de Ingeniería Química, vol. 14, no. 3, pp. 801–811, Sep. 2015.

A. Abdolali and et al, “A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study,” Science of The Total Environment, vol. 542, January 15 2016. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2015.10.095

E. Oguz and M. Ersoy, “Biosorption of cobalt(II) with sunflower biomass from aqueous solutions in a fixed bed column and neural networks modeling,” Ecotoxicology and Environmental Safety, vol. 99, January 2014. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2013.10.004

J. S. Valencia and G. C. Castellar, “Predicción de las curvas de ruptura para la remoción de plomo (II) en disolución acuosa sobre carbón activado en una columna empacada,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 66, pp. 141–158, Mar. 2013.

Z. Aksu and E. Kabasakal, “Batch adsorption of 2, 4- dichlorophenoxy-acetic acid (2, 4-D) from aqueous solution by granular activated carbon,” Separation and Purification Technology, vol. 35, no. 3, March 2004. [Online]. Available: https://doi.org/10.1016/S1383-5866(03)00144-8

A. Mishra, B. D. Tripathi, and A. K. Rai, “Packed-bed column biosorption of chromium(VI) and nickel(II) onto fenton modified Hydrilla verticillata dried biomass,” Ecotoxicology and environmental safety, vol. 132, October 2016. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2016.06.026

N. Sivarajasekar, N. Mohanraj, R. Baskar, and S. Sivamani, “Fixed-bed adsorption of ranitidine hydrochloride onto microwave assisted—activated Aegle marmelos correa fruit shell: statistical optimization and breakthrough modelling,” Arabian Journal for Science and Engineering, vol. 43, no. 5, pp. 2205–2215, May 2018.

M. A. Martín, F. Hernáinz, G. Blázquez, G. Tenorio, and M. Calero, “Sorption of Cr (VI) onto olive stone in a packed bed column: Prediction of kinetic parameters and breakthrough curves,” Journal of Environmental Engineering, vol. 136, no. 12, December 2010. [Online]. Available: https://doi.org/10.1061/(ASCE)EE.1943-7870.0000281

S. V. Gokhale, K. K. Jyoti, and S. S. Lele, “Modeling of chromium (VI) biosorption by immobilized Spirulina platensis in packed column,” Journal of Hazardous Materials, vol. 170, no. 2-3, October 30 2009. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2009.05.005

A. B. Albadarin and et al, “Modelling and fixed bed column adsorption of Cr(VI) onto orthophosphoric acid-activated lignin,” Chinese Journal of Chemical Engineering, vol. 20, no. 3, June 2012. [Online]. Available: https://doi.org/10.1016/S1004-9541(11)60208-5

K. M. Sreenivas, M. B. Inarkar, S. V. Gokhale, and S. S. Lele, “Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies,” Journal of Environmental Chemical Engineering, vol. 2, no. 1, March 2014. [Online]. Available: https://doi.org/10.1016/j.jece.2014.01.017

J. A. Lara, C. Tejada, A. Villabona, A. Arrieta, and C. Granados, “Adsorción de plomo y cadmio en sistema continuo de lecho fijo sobre residuos de cacao,” Revista Ion, vol. 29, no. 2, December 15 2016. [Online]. Available: https://doi.org/10.18273/revion.v29n2-2016009

L. M. Vera and et al, “Modelado en columna de lecho fijo para la bioadsorción de cd2+ y pb2+ con cáscara de cacao,” Revista internacional de contaminación ambiental, vol. 34, no. 4, November 2018. [Online]. Available: http://dx.doi.org/10.20937/rica.2018.34.04.05

A. Nam and et al, “Evaluation of amine-functionalized acrylic ion exchange fiber for chromium(VI) removal using flow-through experiments modeling and real wastewater,” Journal of Industrialand Engineering Chemistry, vol. 66, October 25 2018. [Online]. Available: https://doi.org/10.1016/j.jiec.2018.05.029

S. Rasaki, B. Zhang, S. Liu, T. Thomas, and M. Yang, “Nanourchin ZnO@TiCN composites for Cr (VI) adsorption and thermochemical remediation,” Journal of Environmental Chemical Engineering, vol. 6, no. 4, May 2018. [Online]. Available: https://doi.org/10.1016/j.jece.2018.05.040

W. Zhang and et al, “Hybrid functionalized chitosan-Al2O3@SiO2 composite for enhanced Cr (VI) adsorption,” Chemosphere, vol. 203, July 2018. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2018.03.188

S. Guiza, “Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel,” Ecological Engineering, vol. 99, February 2017. [Online]. Available: https://doi.org/10.1016/j.ecoleng.2016.11.043

E. Malkoc and Y. Nuhoglu, “Determination of kinetic and equilibrium parameters of the batch adsorption of Cr (VI) onto waste acorn of Quercus ithaburensi,” Chemical Engineering and Processing: Process Intensification, vol. 46, no. 10, October 2007. [Online]. Available: https://doi.org/10.1016/j.cep.2007.05.007

S. Rangabhashiyam and N. Selvaraju, “Efficacy of unmodified and chemically modified Swietenia mahagoni shells for the removal of hexavalent chromium from simulated wastewater,” Journal of Molecular Liquids, vol. 209, September 2015. [Online]. Available: https://doi.org/10.1016/j.molliq.2015.06.033

K. C. Bedin, A. C. Martins, A. L. Cazetta, O. Pezoti, and V. C. Almeida, “KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal,” Chemical Engineering Journal, vol. 286, February 15 2016. [Online]. Available: https://doi.org/10.1016/j.cej.2015.10.099

Downloads

Published

2020-02-21

How to Cite

Tejada-Tovar, C. N., Villabona-Ortíz, A., & Ortega Toro, R. (2020). Cr(VI) biosorption: effect of temperature, particle size and bed height. Revista Facultad De Ingeniería Universidad De Antioquia, (96), 78–86. https://doi.org/10.17533/udea.redin.20191149

Most read articles by the same author(s)