Modelo de fragmentación para comportamiento tensil de compuestos híbridos entremezclados y radio de mezclado óptimo

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20210423

Palabras clave:

polímero, materiales compuestos, mecánica, fibras, modelos matemáticos

Resumen

En este trabajo, se propone un modelo numérico de fragmentación para predecir la respuesta mecánica de compuestos híbridos entremezclados, unidireccionales bajo cargas de tensión. El modelo está basado en uno desarrollado previamente para compuestos unidireccionales considerando el número crítico de grietas de fibra y la corrección de la resistencia interfacial fibra-matriz. Se consideran los híbridos conformados por dos refuerzos y es evaluada la contribución energética de ambos durante el proceso de daño. Adicionalmente, la deformación unitaria pseudo-dúctil, la resistencia a fluencia y el nivel de degradación de cada refuerzo son estimados. El presente modelo es comparado con un modelo de falla progresiva y simulaciones micromecánicas por elementos finitos, obteniendo algunas similitudes en el comportamiento esfuerzo-deformación. Los resultados muestran que tanto el sub-compuesto de baja elongación como el de alta elongación experimentan una respuesta lineal a tensión donde las fibras permanecen intactas (IF), y fragmentación (FM) donde la rotura ocurre. El fenómeno de deslizamiento/separación (SS) surge en uno de los sub-compuestos cuando la saturación de grietas es alcanzada, y la falla ocurre cuando el otro experimenta saturación de grietas. Los resultados también muestran que los fenómenos IF, FM y SS están condicionados por el radio de mezcla de fibra, α. El modelo permite estimar el valor óptimo de α para el cual la máxima deformación unitaria pseudo-dúctil y efecto híbrido son alcanzados.

|Resumen
= 1465 veces | HTML (ENGLISH)
= 0 veces| | PDF (ENGLISH)
= 484 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Juan David Vanegas- Jaramillo, Instituto Tecnológico Metropolitano

Doctor en Ingeniería, Ingeniería Mecánica.

Luis Javier Cruz-Riaño, Universidad Pontificia Bolivariana

Doctor en Ingeniería, Director de Grupo de Investigación sobre Nuevos Materiales.

Iván David Patiño-Arcila, Institución Universitaria Pascual Bravo

Doctor en Ingeniería.

Citas

T. Hayashi, K. Koyama, A. Yamazaki, and M. Kihira, “Development of new material properties by hybrid composition (2nd report),” Fukugo Zairyo (composite materials), vol. 1, pp. 18–20, 1975.

A. R. Bunsell and B.Harris, “Hybrid carbon and glass fibre composites,” Composites, vol. 5, no. 4, Jul. 1974. [Online]. Available: https://doi.org/10.1016/0010-4361(74)90107-4

P. W. Manders and M. G. Bader, “The strength of hybrid glass/carbon fibre composites,” Journal of Materials Science, vol. 16, Aug. 1981. [Online]. Available: https://doi.org/10.1007/BF00542387

Y. Swolfs, I. Verpoest, and L. Gorbatikh, “Maximising the hybrid effect in unidirectional hybrid composites,” Materials & Design, vol. 93, Mar. 05 2016. [Online]. Available: https://doi.org/10.1016/j.matdes.2015.12.137

G. Czél, M. Jalalvand, and M. R. Wisnom, “Demonstration of pseudo-ductility in unidirectional hybrid composites made of discontinuous carbon/epoxy and continuous glass/epoxy plies,” Composites Part A: Applied Science and Manufacturing, vol. 72, May. 2015. [Online]. Available: https://doi.org/10.1016/j.compositesa.2015.01.019

J. Summerscales and D. Short, “Carbon fibre and glass fibre hybrid reinforced plastics,” Composites, vol. 9, no. 3, Jul. 1978. [Online]. Available: https://doi.org/10.1016/0010-4361(78)90341-5

K. S. Pandya, C. Veerraju, , and N. K. Naik, “Hybrid composites made of carbon and glass woven fabrics under quasi-static loading,” Materials & Design, vol. 32, no. 7, Aug. 2011. [Online]. Available: https://doi.org/10.1016/j.matdes.2011.03.003

G. Czél, J. Etches, I. P. Bond, and M. R. Wisnom, “Development and characterisation of pseudo-ductile hybrid carbon/glass-epoxy composites made of thin spread carbon tows,” in 15th European Conference On Composite Materials, Venice, Italy, 2012, pp. 24–28.

M. Jalalvand, G. Czél, and M. R. Wisnom, “Numerical modelling of the damage modes in ud thin carbon/glass hybrid laminates,” Composites Science and Technology, vol. 94, Apr. 09 2014. [Online]. Available: https://doi.org/10.1016/j.compscitech.2014.01.013

G. Czél, M. Jalalvand, and M. R. Wisnom, “Hybrid specimens eliminating stress concentrations in tensile and compressive testing of unidirectional composites,” Composites Part A: Applied Science and Manufacturing, vol. 91, Dec. 2016. [Online]. Available: https://doi.org/10.1016/j.compositesa.2016.07.021

M. Jalalvand, G. Czél, and M. R. Wisnom, “Parametric study of failure mechanisms and optimal configurations of pseudo-ductile thin-ply ud hybrid composites,” Composites Part A: Applied Science and Manufacturing, vol. 74, Jul. 2015. [Online]. Available: https://doi.org/10.1016/j.compositesa.2015.04.001

G. Czél and M. R. Wisnom, “Demonstration of pseudo-ductility in high performance glass/epoxy composites by hybridisation with thin-ply carbon prepreg,” Composites Part A: Applied Science and Manufacturing, vol. 52, Sep. 2013. [Online]. Available: https://doi.org/10.1016/j.compositesa.2013.04.006

H. Ikbal, Q. Wang, A. Azzam, and W. Li, “Effect of hybrid ratio and laminate geometry on compressive properties of carbon/glass hybrid composites,” Fibers and Polymers, vol. 17, Feb. 02 2016. [Online]. Available: https://doi.org/10.1007/s12221-016-5706-6

C. Dong and I. J. Davies, “Flexural strength of bidirectional hybrid epoxy composites reinforced by e glass and t700s carbon fibres,” Composites Part B: Engineering, vol. 72, Apr. 2015. [Online]. Available: https://doi.org/10.1016/j.compositesb.2014.11.031

B. Lauke, U. Bunzel, and K. Schneider, “Effect of hybrid yarn structure on the delamination behaviour of thermoplastic composites,” Composites Part A: Applied Science and Manufacturing, vol. 29, no. 11, Nov. 1998. [Online]. Available: https://doi.org/10.1016/S1359-835X(98)00059-1

Y. Swolfs, R. M. Mcmeeking, I. Verpoest, and L. Gorbatikh, “The effect of fibre dispersion on initial failure strain and cluster development in unidirectional carbon/glass hybrid composites,” Composites Part A: Applied Science and Manufacturing, vol. 69, Feb. 2015. [Online]. Available: https://doi.org/10.1016/j.compositesa.2014.12.001

A. Martone, M. Giordano, V. Antonucci, and M. Zarrelli, “Enhancing damping features of advanced polymer composites by micromechanical hybridization,” Composites Part A: Applied Science and Manufacturing, vol. 41, no. 11, Nov. 2011. [Online]. Available: https://doi.org/10.1016/j.compositesa.2011.07.019

A. A. J. M. Peijs and J. M. M. de Kok, “Hybrid composites based on polyethylene and carbon fibres. part 6: Tensile and fatigue behaviour,” Composites, vol. 24, no. 1, 1993. [Online]. Available: https://doi.org/10.1016/0010-4361(93)90260-F

Y. J. You, Y. H. Park, H. Y. Kim, and J. S. Park, “Hybrid effect on tensile properties of frp rods with various material compositions,” Composite Structures, vol. 80, no. 1, Sep. 2007. [Online]. Available: https://doi.org/10.1016/j.compstruct.2006.04.065

H. Diao, A. Bismarck, P. Robinson, and M. R. Wisnom, “Production of continuous intermingled cf/gf hybrid composite via fibre tow spreading technology,” in 16th European Conference On Composite Materials, Seville, Spain, 2014, pp. 22–26.

——, “Pseudo-ductile behavior of unidirectional fibre reinforced polyamide-12 composite by intra-tow hybridization,” in 15th European Conference on Composite Materials, Venice, Italy, 2012, pp. 24–28.

L. Mishnaevsky and G. Dai, “Hybrid carbon/glass fiber composites: Micromechanical analysis of structure–damage resistance relationships,” Computational Materials Science, vol. 81, Jan. 2014. [Online]. Available: https://doi.org/10.1016/j.commatsci.2013.08.024

J. M. Finley and et al., “Exploring the pseudo-ductility of aligned hybrid discontinuous composites using controlled fibre-type arrangements,” Composites Part A: Applied Science and Manufacturing, vol. 107, Apr. 2018. [Online]. Available: https://doi.org/10.1016/j.compositesa.2017.11.028

G. Kretsis, “A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics,” Composites, vol. 18, no. 1, Jan. 1987. [Online]. Available: https://doi.org/10.1016/0010-4361(87)90003-6

D. Short and J. Summerscales, “Hybrids-a review: Part 1. techniques, design and construction,” Composites, vol. 10, no. 4, Oct. 1979. [Online]. Available: https://doi.org/10.1016/0010-4361(79)90022-3

——, “Hybrids-a review: Part 2. physical properties,” Composites, vol. 11, no. 1, Jan. 1980. [Online]. Available: https://doi.org/10.1016/0010-4361(80)90019-1

J. M. Guerrero, J. A. Mayugo, J. Costa, and A. Turon, “A 3d progressive failure model for predicting pseudo-ductility in hybrid unidirectional composite materials under fibre tensile loading,” Composites Part A: Applied Science and Manufacturing, vol. 107, Apr. 2018. [Online]. Available: https://doi.org/10.1016/j.compositesa.2018.02.005

M. L. Longana, H. N. Yu, M. Jalavand, M. R. Wisnom, and K. D. Potter, “Aligned discontinuous intermingled reclaimed/virgin carbon fibre composites for high performance and pseudo-ductile behaviour in interlaminated carbon-glass hybrids,” Composites Science and Technology, vol. 143, May. 2017. [Online]. Available: https://doi.org/10.1016/j.compscitech.2017.02.028

J. Aveston and A. Kelly, “Theory of multiple fracture of fibrous composites,” Journal of Materials Science, vol. 8, Mar. 1973. [Online]. Available: https://doi.org/10.1007/BF00550155

——, “Tensile first cracking strain and strength of hybrid composites and laminates,” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 294, no.

, Jan. 21 1980. [Online]. Available: https://doi.org/10.1098/rsta.1980.0061

H. Yu, M. L. Longana, M. Jalalvand, M. R. Wisnom, and K. D. Potter, “Pseudo-ductility in intermingled carbon/glass hybrid composites with highly aligned discontinuous fibres,” Composites Part A: Applied Science and Manufacturing, vol. 73, Jun. 2015. [Online]. Available: https://doi.org/10.1016/j.compositesa.2015.02.014

K. D. Jones and A. T. DiBenedetto, “Fiber fracture in hybrid composite systems,” Composites Science and Technology, vol. 51, no. 1, 1994. [Online]. Available: https://doi.org/10.1016/0266-3538(94)90156-2

M. J. Pitkethly and M. G. Bader, “Failure modes of hybrid composites consisting of carbon fibre bundles dispersed in a glass fibre epoxy resin matrix,” Journal of Physics D: Applied Physics, vol. 20, no. 3, 1987. [Online]. Available: https://doi.org/10.1088/0022-3727/20/3/013

M. Jalalvand, G. Czél, and M. R. Wisnom, “Damage analysis of pseudo-ductile thin-ply ud hybrid composites – a new analytical method,” Composites Part A: Applied Science and Manufacturing, vol. 69, Feb. 2015. [Online]. Available: https://doi.org/10.1016/j.compositesa.2014.11.006

J. D. Vanegas-Jaramillo, A. Turon, J. Costa, L. J. Cruz, and J. A. Mayugo, “Analytical model for predicting the tensile strength of unidirectional composites based on the density of fiber breaks,” Composites Part B: Engineering, vol. 141, May. 15 2018. [Online]. Available: https://doi.org/10.1016/j.compositesb.2017.12.012

J. D. Vanegas-Jaramillo and I. D. Patiño-Arcila, “Fragmentation model for the tensile response of unidirectional composites based on the critical number of fiber breaks and the correction of the fiber-matrix interfacial strength,” Latin American Journal of Solids and Structures, vol. 16, no. 7, Aug. 15 2019. [Online]. Available: https://doi.org/10.1590/1679-78255326

J. Lamon, “Stochastic models of fragmentation of brittle fibers or matrix in composites,” Composites Science and Technology, vol. 70, no. 5, May. 2010. [Online]. Available: https://doi.org/10.1016/j.compscitech.2010.01.005

A. S. Ovchinsky, P. T. Meza, J. M. Sandoval, L. A. Flores, and A. A. Zapata, “Acumulación de daño y redistribución de los esfuerzos en materiales reforzados con fibras,” Revista Facultad de Ingeniería, Universidad de Antioqua, vol. 69, Dec. 2013. [Online]. Available: https://www.redalyc.org/pdf/430/43029812009.pdf

P. Tamayo, A. S. Ovchinsky, J. M. Sandoval, L. A. Flores, and R. de G. González, “Estudio de la dinámica de los procesos de fractura y de delaminación en materiales reforzados con fibras,” Revista Facultad de Ingeniería, Universidad de Antioqua, vol. 70, Mar. 2014. [Online]. Available: https://www.redalyc.org/pdf/430/43030033011.pdf

W. A. Curtin, “Exact theory of fibre fragmentation in a single-filament composite,” Journal of Materials Science volume, vol. 26, Oct. 1991. [Online]. Available: https://doi.org/10.1007/BF01143218

J. M. Neumeister, “Bundle pullout—a failure mechanism limiting the tensile strength of continuous fiber reinforced brittle matrix composites— and its implications for strength dependence on volume and type of loading,” Journal of the Mechanics and Physics of Solids, vol. 41, no. 8, Aug. 1993. [Online]. Available: https://doi.org/10.1016/0022-5096(93)90086-U

——, “A constitutive law for continuous fiber reinforced brittle matrix composites with fiber fragmentation and stress recovery,” Journal of the Mechanics and Physics of Solids, vol. 41, no. 8, Aug. 1993. [Online]. Available: https://doi.org/10.1016/0022-5096(93)90085-T

C. Y. Hui, S. L. Phoenix, M. Ibnabdeljalilt, and R. L. Smiths, “An exact closed form solution for fragmentation of weibull fibers in a single filament composite with applications to fiber-reinforced ceramics,” Journal of the Mechanics and Physics of Solids, vol. 43, no. 10, Oct. 1995. [Online]. Available: https://doi.org/10.1016/0022 5096(95)00045-K

A. Turon, J. Costa, P. Maimí, D. Trias, and J. A. Mayugos, “A progressive damage model for unidirectional fibre-reinforced composites based on fibre fragmentation. part i: Formulation,” Composites Science and Technology, vol. 65, no. 13, Oct. 2005. [Online]. Available: https://doi.org/10.1016/j.compscitech.2005.04.012

Y. Swolfs and et al., “Global load-sharing model for unidirectional hybrid fibre-reinforced composites,” Journal of the Mechanics and Physics of Solids, vol. 84, Nov. 2015. [Online]. Available: https://doi.org/10.1016/j.jmps.2015.08.009

M. Ibnabdeljalil and W. A. Curtin, “Strength and reliability of fiber-reinforced composites: Localized load-sharing and associated size effects,” Journal of the Mechanics and Physics of Solids, vol. 34, no. 21, Jul. 1997. [Online]. Available: https://doi.org/10.1016/S0020-7683(96)00179-5

I. J. Beyerlein and S. L. Phoenix, “Stress concentrations around multiple fiber breaks in an elastic matrix with local yielding or debonding using quadratic influence superposition,” Journal of the Mechanics and Physics of Solids, vol. 44, no. 12, Dec. 1996. [Online]. Available: https://doi.org/10.1016/S0022-5096(96)00068-3

A. M. Sastry and S. L. Phoenix, “Load redistribution near non-aligned fibre breaks in a two-dimensional unidirectional composite using break-influence superposition,” Journal of Materials Science Letters, no. 12, Jan. 1993. [Online]. Available: https://doi.org/10.1007/BF00627024

S. J. Zhou and W. A. Curtin, “Failure of fiber composites: A lattice green function model,” Acta Metallurgica et Materialia, vol. 43, no. 8, Aug. 1995. [Online]. Available: https://doi.org/10.1016/0956-7151(95)00003-E

D. G. Harlow and S. L. Phoenix, “The chain-of-bundles probability model for the strength of fibrous materials i: Analysis and conjectures,” Journal of Composite Materials, vol. 12, no. 2, Jul. 01 1978. [Online]. Available: https://doi.org/10.1177/002199837801200207

——, “The chain-of-bundles probability model for the strength of fibrous materials ii: A numerical study of convergence,” Journal of Composite Materials, vol. 12, no. 3, Oct. 01 1978. [Online]. Available: https://doi.org/10.1177/002199837801200308

W. A. Curtin and N. Takeda, “Tensile strength of fiber-reinforced composites: I. model and effects of local fiber geometry,” Journal of Composite Materials, vol. 32, no. 22, Nov. 01 1998. [Online]. Available: https://doi.org/10.1177/002199839803202203

——, “Tensile strength of fiber-reinforced composites: Ii. application to polymer matrix composites,” Journal of Composite Materials, vol. 32, no. 22, Nov. 01 1998. [Online]. Available: https://doi.org/10. 1177/002199839803202204

C. M. Landis, I. J. Beyerlein, and R. M. McMeeking, “Micromechanical simulation of the failure of fiber reinforced composites,” Journal of the Mechanics and Physics of Solids, vol. 48, no. 3, Mar. 2000. [Online]. Available: https://doi.org/10.1016/S0022-5096(99)00051-4

T. Okabe, N. Takeda, Y. Kamoshida, M. Shimizu, and W. A. Curtin, “A 3d shear-lag model considering micro-damage and statistical strength prediction of unidirectional fiber-reinforced composites,” Composites Science and Technology, vol. 61, no. 12, Sep. 2001. [Online]. Available: https://doi.org/10.1016/S0266-3538(01)00079-3

S. Behzad, P. T. Curtis, and F. R. Jones, “Improving the prediction of tensile failure in unidirectional fibre composites by introducing matrix shear yielding,” Composites Science and Technology, vol. 69, no. 14, Nov. 2009. [Online]. Available: https://doi.org/10.1016/j.compscitech.2009.06.010

C. Zweben, “Tensile strength of hybrid composites,” Journal of Materials Science, no. 12, Jul. 1977. [Online]. Available: https://doi.org/10.1007/BF00540846

H. Fukuda, “An advanced theory of the strength of hybrid composites,” Journal of Materials Science, no. 19, Mar. 1984. [Online]. Available: https://doi.org/10.1007/BF00540468

V. P. Rajan and W. A. Curtin, “Rational design of fiber-reinforced hybrid composites: A global load sharing analysis,” Composites Science and Technology, vol. 117, Sep. 2015. [Online]. Available: https://doi.org/10.1016/j.compscitech.2015.06.015

R. P. Tavares and et al., “Mechanics of hybrid polymer composites: analytical and computational study,” Computational Mechanics, vol. 57, Jan. 11 2016. [Online]. Available: https://doi.org/10.1007/s00466-015-1252-0

Y. Zhou, M. A. Baseer, H. Mahfuz, and S. Jeelani, “Statistical analysis on the fatigue strength distribution of t700 carbon fiber,” Composites Science and Technology, vol. 66, no. 13, Oct. 2006. [Online]. Available: https://doi.org/10.1016/j.compscitech.2005.12.020

J. Watanabe, F. Tanaka, H. Okuda, and T. Okabe, “Tensile strength distribution of carbon fibers at short gauge lengths,” Advanced Composite Materials, vol. 23, no. 5-6, May. 12 2014. [Online]. Available: https://doi.org/10.1080/09243046.2014.915120

A. C. L. M. Y. Matveev and I. A. Jones, “Modelling of textile composites with fibre strength variability,” Composites Science and Technology, vol. 105, Dec. 10 2014. [Online]. Available: https://doi.org/10.1016/j.compscitech.2014.09.012

J. Koyanagi, H. Hatta, M. Kotani, and H. Kawada, “A comprehensive model for determining tensile strengths of various unidirectional composites,” Journal of Composite Materials, vol. 43, no. 18, Jul. 09 2009. [Online]. Available: https://doi.org/10.1177/0021998309341847

W. A. Curtin, “Tensile strength of fiber-reinforced composites: Iii. beyond the traditional weibull model for fiber strengths,” Journal of Composite Materials, vol. 34, no. 15, Aug. 01 2000. [Online]. Available: https://doi.org/10.1177/002199830003401503

Y. Swolfs, I. Verpoest, and L. Gorbatikh, “Recent advances in fibre-hybrid composites: materials selection, opportunities and applications,” International Materials Review, vol. 64, no. 4, 2019. [Online]. Available: https://doi.org/10.1080/09506608.2018.1467365

M. R. Wisnom and et al., “Hybrid effects in thin ply carbon/glass unidirectional laminates: Accurate experimental determination and prediction,” Composites Part A: Applied Science and Manufacturing, vol. 88, Sep. 2016. [Online]. Available: https://doi.org/10.1016/j.compositesa.2016.04.014

F. Ribeiro, J. Sena-Cruz, F. G. Branco, and E. Júlio, “Hybrid effect and pseudo-ductile behaviour of unidirectional interlayer hybrid frp composites for civil engineering applications,” Construction and Building Materials, vol. 171, May. 20 2018. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2018.03.144

Publicado

2021-04-07

Cómo citar

Vanegas- Jaramillo, J. D., Cruz-Riaño, L. J., & Patiño-Arcila, I. D. (2021). Modelo de fragmentación para comportamiento tensil de compuestos híbridos entremezclados y radio de mezclado óptimo. Revista Facultad De Ingeniería Universidad De Antioquia, (103), 96–115. https://doi.org/10.17533/udea.redin.20210423