A review of airflow rate estimation techniques for natural ventilation in buildings





Construction engineering, buildings, experimental methods, natural ventilation


As natural ventilation involves local and global interactions, the estimation of these interactions can be performed by many approaches. Such approaches, rather more experimental and numerical than analytical, often require a great deal of instrumentation and equipment, which results in higher demands on project budget and funding.  The present work is devoted to comprehending the natural ventilation concept, and to assess the existing experimental techniques already implemented for past researchers in the estimation of the ventilation airflow rate due to the wind and thermal buoyancy effects. A brief review of modeling techniques is also presented. This will provide a strong theoretical grasp of the natural ventilation process as part of the main elements in the thermal behavior of buildings. Ultimately, these bases are intended to help choose the most suitable techniques to estimate the natural ventilation airflow rate. The adequate benefit-to-budget technique appears to be the airtightness tests (blower door tests), since empirical Equations relating the airflow directly to the pressure difference in the building for both cases: infiltrations (openings closed) and openings opened, can be obtained.  Also, the location of the leakages can be identified without complications, and this technique has the potential to estimate in situ the airflow capacity and friction characteristics of the openings.

= 515 veces | PDF
= 220 veces|


Download data is not yet available.

Author Biographies

Miguel Chen Austin, Universidad Tecnológica de Panamá

Researcher, Mechanical Engineering Faculty

Dafni Mora, Universidad Tecnológica de Panamá

Professor, Mechanical Engineering Faculty

Denis Bruneau, Institute of Mechanical Engineering (I2M)

Full Professor

Alain Sempey, Institute of Mechanical Engineering (I2M)



J. Araúz, D. Mora, and M. Chen Austin, “Impact of the Envelope Layout in the Thermal Behavior of Buildings in Panama: A Numerical Study,” in 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), Oct. 2019, pp. 209–214.

M. Zune, L. Rodrigues, and M. Gillott, “Vernacular passive design in Myanmar housing for thermal comfort,” Sustainable Cities and Society, vol. 54, p. 101992, Mar. 2020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2210670719335334

D. Rayter, “Guía de aplicación de arquitectura bioclimática en locales educativos,” Lima, Perú, p. 111, 2008.

E. G. Castillo, E. Coronado, and O. Osejo, “Anteproyecto Arquitectónico de un complejo habitacional con énfasis en criterios de Diseño Bioclimático aplicados a edificios de unidades habitacionales en el sector de Villa Fontana Norte; Municipio de Managua, Nicaragua.” Ph.D. dissertation, Universidad Nacional de Ingenieria, 2014.

“Introduction | IEA-EBC Annex 66,” https://annex66.org/. [Online]. Available: https://annex66.org/

“IEA EBC || Annex 79 || Occupant Behaviour-Centric Building Design and Operation,” https://annex79.iea-ebc.org/. [Online]. Available: https://annex79.iea-ebc.org/

C. Zürcher and T. Frank, Physique du bâtiment - Construction et énergie. vdf Hochschulverlag AG and der ETH Zürich, 2014.

H. Zheng, F. Li, H. Cai, and K. Zhang, “Non-intrusive measurement method for the window opening behavior,” Energy and Buildings, vol. 197, pp. 171–176, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378778819300040

Y. Chen, Z. Tong, H. Samuelson, W. Wu, and A. Malkawi, “Realizing natural ventilation potential through window control: The impact of occupant behavior,” Energy Procedia, vol. 158, pp. 3215–3221, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1876610219310562

D. Mora, J. Araúz, and M. Chen Austin, “Towards nearly zero energy buildings in Panama through low-consumption techniques: A numerical study,” in AIP Conference Proceedings, 2019, p. 2191.

F. Allard, Natural ventilation in buildings: A design handbook. James and James - UK (Science publisher), 1998.

A. Ricaud and I. Lokhat, Construire une maison à énergie positive. Dunod Paris, 2010.

E. Solgi, Z. Hamedani, R. Fernando, H. Skates, and N. E. Orji, “A literature review of night ventilation strategies in buildings,” Energy and Buildings, vol. 173, pp. 337 – 352, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378778818307850

D. Bravo-Hidalgo, “Night air conditioning of buildings by external air ventilation,” Revista Facultad de Ingeniería, vol. 27, no. 48, pp. 35–47, 2018.

M. Palme, C. Carrasco, M. Ángel Gálvez, and L. Inostroza, “Natural Ventilation: A Mitigation Strategy to Reduce Overheating in Buildings under Urban Heat Island Effect in South American Cities,” IOP Conference Series: Materials Science and Engineering, vol. 245, no. 7, 2017.

G. Carpentier and J. Uyttenbroeck, “La ventilation des bâtiments en relation avec la consommation d’énergie pour le chauffage,” Rapport III - Commission des communautés européennes, , 1978.

D. Etheridge and P. Phillips, “The prediction of ventilation rates in houses and the implications for energy conservation,” C.I.B. S17 Meeting - Holzkirchen, , 1977.

S. J. Emmerich, W. S. Dols, and J. W. Axley, “Natural ventilation review and plan for design and analysis tools,” National Institute of Standards and Technology (NIST), , 2001.

A. Accili and J. Arias Hurtado, “Natural ventilation strategies for nearly – Zero Energy Sports Halls,” 2016.

A. Belleri, R. Lollini, and S. M. Dutton, “Natural ventilation design: An analysis of predicted and measured performance,” Building and Environment, vol. 81, pp. 123 – 138, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360132314001954

C.-A. Roulet, Santé et qualité de l’environnement intérieur dans les bâtiments. PPUR - Science et ingénierie de l’environnement, 2010.

T. Kleiven, “Natural ventilation in buildings - architectural concepts, consequences and possibilities,” Ph.D. dissertation, 2003, norwegian University of Science and Technology.

B. Givoni, Man, Climate and Architecture, ser. Architectural Science Series. Applied Science Publ., 1976.

J. D. A. Jr., Fundamentals of Aerodynamics, ser. Architectural Science Series. McGraw Hill - 5th edition, 2011.

D. Cóstola, B. Blocken, and J. Hensen, “Overview of pressure coefficient data in building energy simulation and airflow network programs,” Building and Environment, vol. 44, no. 10, pp. 2027 – 2036, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360132309000444

R. Li, A. Pitts, and Y. Li, “Buoyancy-driven natural ventilation of a room with large opennings,” in IBPSA 2007: Building Simulation, 2007.

F. Flourentzou, J. V. der Maas, and C.-A. Roulet, “Natural ventilation for passive cooling: measurement of discharge coefficients,” Energy and Buildings, vol. 27, pp. 283–292, 1998.

K. Andersen, “Naturlig ventilation i erhvervsbygninger, by og byg,” Statens Byggeforskningsinstitutt - Hørsholm, , 2002.

K. Gładyszewska-Fiedoruk and A. Gajewski, “Effect of wind on stack ventilation performance,” Energy and Buildings, vol. 51, pp. 242 – 247, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378778812002629

B. Wang, “Interaction between wind-driven and buoyancy-driven natural ventilation,” in 13th Conference of International Building Performance Simulation Association - Chambéry France August 26-28, 2013.

M. H. Sherman, “Estimation of infiltration from leakage and climate indicators,” Energy and Building, vol. 10, pp. 81–86, 1987.

C. Ghiaus and F. Allard, Natural Ventilation in the Urban Environment: Assessment and Design. Earthscan, 2005.

A. Judet and B. Sesolis, Aéraulique : Principes de l’aéraulique appliqués au génie climatique. Collection des guides thématiques de l’AICVF, PYC édition, 1991.

K. S. Hebbar, K. Sridhara, and P. A. Paranjpe, “Performance of conical jet nozzles in terms of discharge coefficient,” Journal of the aeronautical society of India, vol. 22, no. 1, pp. 4 – 9, 1969.

P. Heiselberg, K. Svidt, and P. V. Nielsen, “Characteristics of airflow from open windows,” Building and Environment, vol. 36, no. 7, pp. 859 – 869, 2001, ventilation for Health and Substainable Environment. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360132301000129

D. Costola and D. Etheridge, “Unsteady natural ventilation at model scale—flow reversal and discharge coefficients of a short stack and an orifice,” Building and Environment, vol. 43, no. 9, pp. 1491 – 1506, 2008. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360132307001618

R. Teppner, B. Langensteiner, W. Meile, G. Brenn, and S. Kerschbaumer, “Air change rates driven by the flow around and through a building storey with fully open or tilted windows: An experimental and numerical study,” Energy and Buildings, vol. 76, pp. 640 – 653, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378778814002199

A. V. Paassen, S. Liem, and B. Gröninger, “Control of night cooling with natural ventilation: Sensitivity analysis of control stratégies and vent openings,” in 19th Annual AIVC Conference, Ventilation and cooling - Oslo, 28-30 septembre, 1998.

M. Krzaczek, J. Florczuk, and J. Tejchman, “Field investigations of stack ventilation in a residential building with multiple chimneys and tilted window in cold climate,” Energy and Buildings, vol. 103, pp. 48 – 61, 2015.

M. Caciolo, “Analyse expérimentale et simulation de la ventilation naturelle mono-façade pour le rafraîchissement des immeubles de bureaux,” Ph.D. dissertation, 2010, ecole nationale supérieure des mines de Paris.

R. Pelletret, G. Liebecq, F. Allard, J. V. der Maas and F. Haghighat, “Modelling of large openings,” in AIVC 21th Conference, Air Movement and Ventilation Control within Buildings - Ottawa Canada, 1991.

ASHRAE, Handbook - Fundamentals. American Society of Heating, Refrigeration and Air-Conditioning Engineers, 2009.

L. Stephan, “Modélisation de la ventilation naturelle pour l’optimisation du rafraîchissement passif des bâtiments,” Ph.D. dissertation, 2010, université Savoie Mont Blanc.

R. Jack, D. Loveday, D. Allinson, and K. Lomas, “Quantifying the effect of window opening on the measured heat loss of a test house,” in International SEEDS Conference 2015: Sustainable Ecological Engineering Design for Society - Leeds Beckett University, 2015, pp. 183 – 196.

M. C. Austin, D. Bruneau, A. Sempey, L. Mora, and A. Sommier, “Experimental study of a natural ventilation strategy in a full-scale

enclosure under meteorological conditions: a buoyancy-driven approach,” in 6th Engineering, Science and Technology Conference - Panama 2017 (ESTEC 2017), 2017, pp. 657 – 667. [Online]. Available: https://knepublishing.com/index.php/KnE-Engineering/article/view/1469/3542

M. C. Austin, A. Sempey, D. Bruneau, and L. Mora, “Influence des effets du vent et du tirage thermique sur le taux de renouvellement de l’air d’un bâtiment ventilé naturellement : estimations par simulation aéraulique directe et par validation expérimentale d’une modélisation thermique,” in Conférence IBPSA France – Bordeaux, 2018, pp. 13 – 21. [Online]. Available: http://ibpsa.fr/index.php?option=com_jdownloads&Itemid=53&view=viewcategory&catid=81

M. Chen Austin, “On the coupling between natural ventilation and sensible energy charge and discharge in buildings : an experimental and modeling approach,” phdthesis, Université de Bordeaux, Sep. 2018. [Online]. Available: https://tel.archives-ouvertes.fr/tel-01932939

P. K. Heiselberg, K. Svidt, and P. V. Nielsen, “Windows: measurements of air flow capacity,” Indoor Environmental Engineering, vol. R0040, no. 115, 2000.

G. A. Faggianelli, “Rafraîchissement par la ventilation naturelle traversante des bâtiments en climat méditerranéen,” Ph.D. dissertation, 2014, université de Corse - Pascal Paoli.

G. Elshafei, A. Negm, M. Bady, M. Suzuki, and M. G. Ibrahim, “Numerical and experimental investigations of the impacts of window parameters on indoor natural ventilation in a residential building,” Energy and Buildings, vol. 141, pp. 321–332, Apr. 2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0378778817306503

M. C. Austin, D. Bruneau, A. Sempey, and L. Mora, “Statistical analysis of architectural features effects on indoor environmental conditions in a plus energy house prototype,” in Passive and Low Energy Architecture (PLEA) - Hong Kong, December 2018, accepted as long paper.

H. Gough, Z. Luo, C. Halios, M.-F. King, C. Noakes, C. Grimmond, J. Barlow, R. Hoxey, and A. Quinn, “Field measurement of natural ventilation rate in an idealised full-scale building located in a staggered urban array: Comparison between tracer gas and pressure-based methods,” Building and Environment, vol. 137, pp. 246–256, Jun. 2018. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0360132318301902

H. L. Gough, J. F. Barlow, Z. Luo, M. F. King, C. H. Halios, and C. S. B. Grimmond, “Evaluating single-sided natural ventilation models against full-scale idealised measurements: Impact of wind direction and turbulence,” Building and Environment, vol. 170, p. 106556, Mar. 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360132319307681

T. S. Larsen, P. K. Heiselberg, and T. Sawachi, “Analysis and design of single-sided natural ventilation,” in The 4th International Symposium on Heating, Ventilation and Air-Conditioning - China, vol. 1, 2003, pp. 159–163.

R. Z. Freire, M. O. Abadie, and N. Mendes, “Single-sided natural ventilation driven by wind pressure and temperature difference,” Energy and Buildings, vol. 62, pp. 222 – 229, 2013.

H. Sacht, L. Bragança, M. Almeida, and R. Caram, “Study of Natural Ventilation in wind Tunnels and Influence of the Position of Ventilation Modules and Types of Grids on a Modular Façade System,” Energy Procedia, vol. 96, pp. 953–964, Sep. 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1876610216308128

K. Kosutova, T. van Hooff, C. Vanderwel, B. Blocken, and J. Hensen, “Cross-ventilation in a generic isolated building equipped with louvers: Wind-tunnel experiments and CFD simulations,” Building and Environment, vol. 154, pp. 263–280, May 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360132319301738

N. Su, S. Peng, N. Hong, and J. Zhang, “Experimental and numerical evaluation of wind-driven natural ventilation and dust suppression effects of coal sheds with porous gables,” Building and Environment, vol. 177, p. 106855, Jun. 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360132320302146

M. Bady, S. Kato, T. Takahashi, and H. Huang, “Experimental investigations of the indoor natural ventilation for different building configurations and incidences,” Building and Environment, vol. 46, no. 1, pp. 65–74, Jan. 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360132310002064

S. Van Buggenhout, A. Van Brecht, S. Eren Özcan, E. Vranken, W. Van Malcot, and D. Berckmans, “Influence of sampling positions on accuracy of tracer gas measurements in ventilated spaces,” Biosystems Engineering, vol. 104, no. 2, pp. 216–223, Oct. 2009. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1537511009001500

G. Remion, B. Moujalled, and M. El Mankibi, “Review of tracer gas-based methods for the characterization of natural ventilation performance: Comparative analysis of their accuracy,” Building and Environment, vol. 160, p. 106180, Aug. 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0360132319303907

G. Hunt and P. Linden, “The fluid mechanics of natural ventilation-displacement ventilation by buoyancy-driven flows assisted by wind,” Building and Environment, vol. 34, pp. 707–720, 1999.

G. Remion, B. Moujalled, and M. E. Mankibi, “Experimental characterization of the impact of unsteady airflows on tracer gas measurement,” IOP Conference Series: Materials Science and Engineering, vol. 609, p. 032028, oct 2019. [Online]. Available: https://doi.org/10.1088%2F1757-899x%2F609%2F3%2F032028

G. N. Walton, “Airflow and multiroom thermal analysis,” ASHRAE transactions, vol. 88, pp. 78 – 91, 1982.

M. Swami and S. Chandra, “Correlations for pressure distribution of buildings and calculation of natural-ventilation airflow,” ASHRAE Transactions, vol. 94, no. 4, pp. 244 – 266, 1988.

M. Grosso, “Wind pressure distribution around buildings: a parametrical model,” Energy and Buildings, vol. 18, no. 2, pp. 101–131, 1992. [Online]. Available: http://www.sciencedirect.com/science/article/pii/037877889290041E

P. Rousseau and E. Mathews, “A new integrated design tool for naturally ventilated buildings,” Energy and Buildings, vol. 23, no. 3, pp. 231 – 236, 1996, pLEA ’94 International Conference. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0378778895009485

T. Larsen and P. Heiselberg, “Single-sided natural ventilation driven by wind pressure and temperature difference,” Energy and Building, vol. 40, no. 6, pp. 1031 – 1040, 2008.

Z. J. Zhai, M. E. Mankibi, and A. Zoubir, “Review of natural ventilation models,” Energy Procedia, vol. 78, pp. 2700 – 2705, 2015, 6th International Building Physics Conference, IBPC 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1876610215020871

Z. J. Zhai, M.-H. Johnson, M. E. Mankibi, and N. Stathopoulos, “Review of natural ventilation models,” International Journal of Ventilation, vol. 15, no. 3-4, pp. 186–204, 2016. [Online]. Available: https://doi.org/10.1080/14733315.2016.1214390

X. Yang, Y. Kang, and K. Zhong, “Theoretical predictions of transient natural displacement ventilation,” Building Simulation, vol. 6, no. 2, pp. 165–171, Jun. 2013. [Online]. Available: http://link.springer.com/10.1007/s12273-013-0098-7




How to Cite

Chen Austin, M., Mora, D., Bruneau, D., & Sempey, A. (2021). A review of airflow rate estimation techniques for natural ventilation in buildings. Revista Facultad De Ingeniería Universidad De Antioquia, (104), 83–100. https://doi.org/10.17533/udea.redin.20210849