Literature review of deploying small transmitters on a spectrum sharing scheme

Authors

DOI:

https://doi.org/10.17533/udea.redin.20210426

Keywords:

Antennas, CBRS, deployment of transmitters, sharing spectrum, 5G

Abstract


Nowadays, there are a lot of misinformation and myths related to both the deployment of antennas for 5G and the frequency bands used in such technology. Many of these myths arise from the lack of serious research documents released in common language to be understood by different knowledge areas. This work makes a small contribution in this regard and shows a bibliographic review of the most relevant characteristics related to the problem of deployment of transmitters (a.k.a. base stations), and also takes into account a spectrum sharing scheme. As a case study, we will analyze the CBRS regulation used in the United States for the deployment of 5G, it will provide an overview of engineering problems and also, the areas of research that still need to be explored.

|Abstract
= 361 veces | PDF
= 353 veces|

Downloads

Download data is not yet available.

Author Biographies

Juan Guillermo Torres, Universidad de Los Andes

MSc student, Electronic and electrical engineering

Roberto Bustamante, Universidad de los Andes

Associate professor, Department of Electronic and electrical engineering

Carlos E. Caicedo, Syracuse University iSchool

Professor and Researcher

References

M. Patzold. 5g is coming around the corner [mobile radio]. IEEE Vehicular Technology Magazine, 14(1):4–10, mar 2019.

M. Hoyhtya, A. Mammela, M. Eskola, M. Matinmikko, J. Kalliovaara, J. Ojaniemi, J. Suutala, R. Ekman, R. Bacchus, and D. Roberson. Spectrum occupancy measurements: A survey and use of interference maps. IEEE Communications Surveys and Tutorials, pages 1–1, 2016.

F. H. Sanders, K. E. Davis, and K. D. Gremban. Ntia technical report tr-18-530 a 53-year history of spectrum efficiency studies and recommended future directions. Technical report, National Telecommunications and Information Administration, 2018.

R. H. Tehrani, S. Vahid, D. Triantafyllopoulou, H. Lee, and K. Moessner. Licensed spectrum sharing schemes for mobile operators: A survey and outlook. IEEE Communications Surveys and Tutorials, pages 1–1, 2016.

K. Mun. Ongo white paper: Ongo: New shared spectrum enables flexible indoor and outdoor mobile solutions and new business models. Mobile Experts, 2018.

The US President’s Council of Advanced Science and Technology. Realizing the full potential of govt-held spectrum to spur economic growth. Technical report, President’s Council of Advisors on Science and Technology, 2012, Washington D. C., 2012.

J. G. Torres. Methodology and analysis of small cells deployment aimed at offering offloading service under the spectrum sharing scheme. Ph.d. dissertation, Universidad de los Andes, Colombia, 2020.

FCC Spectrum Policy Task Force. Report of the spectrum efficiency working group. Technical report, FCC, 2002.

J. S. Rose, W. M. Snelgrove, and Z. G. Vranesic. Parallel standard cell placement algorithms with quality equivalent to simulated annealing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 7(3):387–396, mar 1988.

A. Taufique, M. Jaber, A. Imran, Z. Dawy, and E. Yacoub. Planning wireless cellular networks of future: Outlook, challenges and opportunities. IEEE Access, 5:4821–4845, 2017.

F. Rebecchi, M. Dias de Amorim, V. Conan, A. Passarella, R. Bruno, and M. Conti. Data offloading techniques in cellular networks: A survey. IEEE Communications Surveys and Tutorials, 17(2):580–603, 2015.

J. Andrews, S. Singh, Q. Ye, X. Lin, and H. Dhillon. An overview of load balancing in hetnets: old myths and open problems. IEEE Wireless Communications, 21(2):18–25, apr 2014.

J. D. Wells. Cellular system design using the expansion cell layout method. IEEE Transactions on Vehicular Technology, 33(2):58–66, may 1984.

J. G. Andrews. Seven ways that hetnets are a cellular paradigm shift. IEEE Communications Magazine, 51(3):136–144, mar 2013.

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2):117–132, apr 2003.

M. Arthi and P. Arulmozhivarman. A flexible and cost-effective heterogeneous network deployment scheme for beyond 4g. Arabian Journal for Science and Engineering, 41(12):5093–5109, dec 2016.

J. Y Chang and Y. S. Lin. An efficient base station and relay station placement scheme for multi-hop relay networks. Wireless Personal Communications, 82(3):1907–1929, jun 2015.

Y. C Wang and C. A. Chuang. Efficient enb deployment strategy for heterogeneous cells in 4g lte systems. Computer Networks, 79:297–312, mar 2015.

C. S. Xin, P. Paul, M. Song, and Q. Gu. On dynamic spectrum allocation in geo-location spectrum sharing systems. IEEE Transactions on Mobile Computing, pages 1–1, 2018.

O. Abdelkhalek, S. Krichen, and A. Guitouni. A genetic algorithm based decision support system for the multi-objective node placement problem in next wireless generation network. Applied Soft Computing, 33:278–291, aug 2015. [21] J. Peng, P. Hong, and K. Xue. Energy-aware cellular deployment strategy under coverage performance constraints. IEEE Transactions on Wireless Communications, 14(1):69–80, jan 2015.

P. Kapadia, O. Damani, and A. Kumar. Interference constrained coverage algorithms in the protocol and sinr models. Wireless Networks, 21(4):1391–1409, may 2015.

X. Huang and S. Wang. Aggregation points planning in smart grid communication system. IEEE Communications Letters, 19(8):1315–1318, aug 2015.

D. Schweitzer and H. Medal. Wireless lan transmitter location under the threat of jamming attacks. Computers and Operations Research, 106:14–27, jun 2019.

O. Abdelkhalek, N. Dahmani, S. Krichen, and A. Guitouni. Vl-pls: A multi-objective variable length pareto local search to solve the node placement problem for next generation network. Procedia Computer Science, 73:250-257, jan 2015.

G. Koutitas, A. Karousos, and L. Tassiulas. Deployment strategies and energy efficiency of cellular networks. IEEE Transactions on Wireless Communications, 11(7):2552–2563, jul 2012.

Y. C Wang and S. Lee. Small-cell planning in lte hetnet to improve energy efficiency. International Journal of Communication Systems, 31(5):e3492, mar 2018.

W. Zhao, S. Wang, C. Wang, and X. Wu. Cell planning for heterogeneous networks: An approximation algorithm. In IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, pages 1087–1095. IEEE, apr 2014.

S. Yin, Y. Zhao, and L. Li. Resource allocation and basestation placement in cellular networks with wireless powered uavs. IEEE Transactions on Vehicular Technology, 68(1):1050–1055, jan 2019.

J. Y Wang, J. B Wang, and M. Chen. System capacity analysis and antenna placement optimization for downlink transmission in distributed antenna systems. Wireless Personal Communications, 71(1):531–554, jul 2013.

C. E. Caicedo Bastidas, J. A. Stine, A. Rennier, M. Sherman, A. Lackpour, M. M. Kokar, and R. Schrage. Ieee 1900.5.2: Standard method for modeling spectrum consumption: Introduction and use cases. IEEE Communications Standards Magazine, 2(4):49–55, dec 2018.

E. M. Vitucci, V. Degli-Esposti, F. Fuschini, J. S. Lu, M. Barbiroli, J. N. Wu, M. Zoli, J. J. Zhu, H. L. Bertoni, E. M. Vitucci, V. Degli-Esposti, F. Fuschini, J. S. Lu, M. Barbiroli, J. N. Wu, M. Zoli, J. J. Zhu, and H. L. Bertoni. Ray tracing rf field prediction: An unforgiving validation. International Journal of Antennas and Propagation, pages 1–11, 2015.

D. Li, J. Weng, X. Chu, and J. Zhang. A network deployment strategy for home area networks in smart grid. In 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pages 2160–2165. IEEE, aug 2015.

Y. Okumura, E. Ohmori, T. Kawano, and K. Fukuda. Fieldstrength and its variability in vhf and uhf land mobile radio service, 1968.

M. Hata. Empirical formula for propagation loss in land mobile radio services. IEEE Transactions on Vehicular Technology, 29(3):317–325, aug 1980.

T. S. Rappaport. Wireless communications : principles and practice. Prentice Hall PTR, 1996.

H. D. Sherali, C. M. Pendyala, and T. S. Rappaport. Optimal location of transmitters for micro-cellular radio communication system design. IEEE Journal on Selected Areas in Communications, 14(4):662–673, may 1996.

J. G. Torres, R. Bustamante, and C. E. Caicedo. Characterizing the mobile coverage probability in different geometries. IEEE Latin America Transactions, 17(8):1342–1348, aug 2019.

J. G. Andrews, X. Zhang, G. D. Durgin, and A. K. Gupta. Are we approaching the fundamental limits of wireless network densification? IEEE Communications Magazine, 54(10):184–190, oct 2016.

O. Abdelkhalek, H. Masri, and S. Krichen. An adaptive variable neighborhood search for solving the multi objective node placement problem. Electronic Notes in Discrete Mathematics, 47:189–196, feb 2015.

S. Lee, S. Lee, K. Kim, and Y. H. Kim. Base station placement algorithm for large-scale lte heterogeneous networks. PLOS ONE, 10(10):e0139190, oct 2015.

C. W Tsai, H. H. Cho, T. K. Shih, J. S Pan, and J. J. P. C. Rodrigues. Metaheuristics for the deployment of 5g. IEEE Wireless Communications, 22(6):40–46, dec 2015.

J. M. Ruiz Aviles, M. Toril, and S. Luna Ramirez. A femtocell location strategy for improving adaptive traffic sharing in heterogeneous lte networks. EURASIP Journal on Wireless Communications and Networking, 2015(1):38, dec 2015.

W. Zhao, S. Wang, C. Wang, and X. Wu. Approximation algorithms for cell planning in heterogeneous networks. IEEE Transactions on Vehicular Technology, 66(2):1561–1572, feb 2017.

G. K. Das, S. Das, S. C. Nandy, and B. P. Sinha. Efficient algorithm for placing a given number of base stations to cover a convex region. Journal of Parallel and Distributed Computing, 66(11):1353–1358, nov 2006.

N. Lev-Tov and D. Peleg. Polynomial time approximation schemes for base station coverage with minimum total radii. Computer Networks, 47(4):489–501, mar 2005.

M. Franceschetti, M. Cook, and J. Bruck. A geometric theorem for network design. IEEE Transactions on Computers, 53(4):483–489, apr 2004.

H. S. Jo, Y. J. Sang, P. Xia, and J. G. Andrews. Heterogeneous cellular networks with flexible cell association: A comprehensive downlink sinr analysis. IEEE Transactions on Wireless Communications, 11(10):3484–3495, oct 2012.

Tianyang Bai and R. W. Heath. Location-specific coverage in heterogeneous networks. IEEE Signal Processing Letters, 20(9):873–876, sep 2013.

K. R. Guruprasad. Effectiveness-based voronoi partition: a new tool for solving a class of location optimization problems. Optimization Letters, 7(8):1733–1743, dec 2013.

A. Abdel Khalek, L. Al-Kanj, Z. Dawy, and G. Turkiyyah. Optimization models and algorithms for joint uplink/downlink umts radio network planning with sir-based power control. IEEE Transactions on Vehicular Technology, 60(4):1612–1625, may 2011.

M. Argany, M. A. Mostafavi, F. Karimipour, and C. Gagne. A GIS Based Wireless Sensor Network Coverage Estimation and Optimization: A Voronoi Approach. Springer, Berlin, Heidelberg, 2011.

J. S. Li and H. C. Kao. Distributed k-coverage self-location estimation scheme based on voronoi diagram. IET Communications, 4(2):167, 2010.

A. Tzes and Y. Stergiopoulos. Convex voronoi-inspired space partitioning for heterogeneous networks: a coverage-oriented approach. IET Control Theory and Applications, 4(12):2802–2812, dec 2010.

J. G. Torres, R. Bustamante, and C. E. Caicedo. Optimal and fast deployment of small cell based on voronoi tessellation. Technical report, Universidad de los Andes, Bogota, 2019.

E. Altman, A. Kumar, C. Singh, and R. Sundaresan. Spatial sinr games combining base station placement and mobile association. In IEEE INFOCOM 2009 - The 28th Conference on Computer Communications, pages 1629 1637. IEEE, apr 2009.

C. Y. Lee and H. G. Kang. Cell planning with capacity expansion in mobile communications: a tabu search approach. IEEE Transactions on Vehicular Technology, 49(5):1678–1691, 2000.

E. Amaldi, A. Capone, and F. Malucelli. Planning umts base station location: optimization models with power control and algorithms. IEEE Transactions on Wireless Communications, 2(5):939–952, sep 2003.

S. Hurley. Planning effective cellular mobile radio networks. IEEE Transactions on Vehicular Technology, 51(2):243–253, mar 2002.

M. Unbehaun and M. Kamenetsky. On the deployment of picocellular wireless infrastructure. IEEE Wireless Communications, 10(6):70–80, dec 2003.

M. Randall, G. McMahon, and S. Sugden. A simulated annealing approach to communication network design. Journal of Combinatorial Optimization, 6(1):55–65, 2002.

T. Chuan-Kang, L. Chung-Nan, C. Hui-Chun, and W. Jain-Shing. Wireless heterogeneous transmitter placement using multiobjective variable-length genetic algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(4):945–958, aug 2009.

A. L. Rezaabad, H. Beyranvand, J. A. Salehi, and M. Maier. Ultra-dense 5g small cell deployment for fiber and wireless backhaul-aware infrastructures. IEEE Transactions on Vehicular Technology, 67(12):12231–12243, dec 2018.

H. Ghazzai, E. Yaacoub, M. S. Alouini, Z. Dawy, and A. Abu-Dayya. Optimized lte cell planning with varying spatial and temporal user densities. IEEE Transactions on Vehicular Technology, 65(3):1575–1589, mar 2016.

N. Weicker, G. Szabo, K. Weicker, and P. Widmayer. Evolutionary multiobjective optimization for base station transmitter placement with frequency assignment. IEEE Transactions on Evolutionary Computation, 7(2):189–203, apr 2003.

U. Challita, Z. Dawy, G. Turkiyyah, and J. Naoum-Sawaya. A chance constrained approach for lte cellular network planning under uncertainty. Computer Communications, 73:34–45, jan 2016.

S. Lee, S. Lee, K. Kim, D. Griffith, and N. Golmie. Optimal deployment of pico base stations in lte-advanced heterogeneous networks. Computer Networks, 72:127–139, oct 2014.

X. Zhang, A. Ludwig, N. Sood, and C. D. Sarris. Physics-based optimization of access point placement for train communication systems. IEEE Transactions on Intelligent Transportation Systems, 19(9):3028–3038, sep 2018.

M. Arthi and P. Arulmozhivarman. Power-aware fuzzy based joint base station and relay station deployment scheme for green radio communication. Sustainable Computing: Informatics and Systems, 13:1–14, mar 2017.

Y. Ye, D. Wu, Z. Shu, and Y. Qian. Overview of lte spectrum sharing technologies. IEEE Access, 4:8105–8115, 2016.

A. Kundu, S. K. Sanyal, and I. S. Misra. Joint location and power optimisation of femto base stations to improve indoor coverage: A geometric approach. Transactions on Emerging Telecommunications Technologies, 27(11):1496–1512, nov 2016.

J. Zhang, N. E, and X. Chu. Small-cell deployment over existing heterogeneous networks. Electronics Letters, 52(3):241–243, feb 2016.

R. E. Badra and G. E. Figueras. Optimal lte femtocell indoor deployment under external intra-system interference. In 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI and PI), pages 598–603. IEEE, jul 2018.

Wireless Innovation Forum. Requirements for commercial operation in the u.s. 3550-3700 mhz citizens broadband radio service band. Technical report, WIF, 2018.

FCC. 47 cfr part 96 - citizens broadband radio service. Technical report, FCC, 2019.

Federal Communications Commission. Fcc 16-55: In the matter of amendment of the commission’s rules with regard to commercial operations in the 3550- 3650 mhz band, 2016.

S. P. Tonkin. A tutorial on the hata and itm propagation models: Confidence, reliability, and clutter with application to interference analysis. Technical report, University of Washington Seattle, 2017.

R. Sole E. Drocella, J. Richards, F. Najmy, A. Lundy, and P. McKenna. 3.5 ghz exclusion zone analyses and methodology. Report 15-517, page 103, 2015.

J. Lee, E. Tejedor, K. Ranta-aho, H. Wang, K. T. Lee, E. Semaan, E. Mohyeldin, J. Song, C. Bergljung, and S. Jung. Spectrum for 5g: Global status, challenges, and enabling technologies. IEEE Communications Magazine, 56(3):12–18, mar 2018.

S. Bhattarai, J. M. Park, B. Gao, K. Bian, and W. Lehr. An overview of dynamic spectrum sharing: Ongoing initiatives, challenges, and a roadmap for future research. IEEE Transactions on Cognitive Communications and Networking, 2(2):110–128, jun 2016.

S. Yrjola, M. Matinmikko, M. Mustonen, and P. Ahokangas. Analysis of dynamic capabilities for spectrum sharing in the citizens broadband radio service. Analog Integrated Circuits and Signal Processing, 91(2):187–201, may 2017.

A. Ghosh, R. A. Berry, and V. Aggarwal. Spectrum measurement markets for tiered spectrum access. IEEE Transactions on Cognitive Communications and Networking, 4(4):929–941, dec 2018.

E. Avdic, I. Macaluso, N. Marchetti, and L. Doyle. Census tract license areas: Disincentive for sharing the 3.5ghz band? In 2016 IEEE Global Communications Conference (GLOBECOM), pages 1–7. IEEE, dec 2016.

M. M. Sohul, M. Yao, T. Yang, and J. H. Reed. Spectrum access system for the citizen broadband radio service. IEEE Communications Magazine, 53(7):18–25, jul 2015.

L. Yin, S. Li, H. Zhu, Y. Ma, Y. Teng, and H. Liu. Reduced-power almost black subframe based pulse radar spectrum sharing for lte system. IEEE Transactions on Electromagnetic Compatibility, 60(5):1223–1230, oct 2018.

M. Palola, M. Hoyhtya, P. Aho, M. Mustonen, T. Kippola, M. Heikkila, S. Yrjola, V. Hartikainen, L. Tudose, A. Kivinen, R. Ekman, J. Hallio, J. Paavola, M. Makelainen, and T. Hanninen. Field trial of the 3.5 ghz citizens broadband radio service governed by a spectrum access system (sas). In 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pages 1–9. IEEE, mar 2017.

R. Karaki and A. Mukherjee. Coexistence of contention-based general authorized access networks in 3.5 ghz cbrs band. In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pages 1–6. IEEE, jun 2018.

F. W. Vook, A. Ghosh, E. Diarte, and M. Murphy. 5g new radio: Overview and performance. In 2018 52nd Asilomar Conference on Signals, Systems, and Computers, pages 1247–1251. IEEE, oct 2018.

X. Y. Roy, Milind M. Buddhikot, and Sumit. Sas-assisted coexistence-aware dynamic channel assignment in cbrs band. IEEE Transactions on Wireless Communications, pages 1–1, 2018.

K. B. Shashika Manosha, S. Joshi, T. Hanninen, M. Jokinen, P. Pirinen, H. Posti, K. Horneman, S. Yrjola, and M. Latva-aho. A channel allocation algorithm for citizens broadband radio service/spectrum access system. In 2017 European Conference on Networks and Communications (EuCNC), pages 1–6. IEEE, jun 2017.

X. Ying, M. M. Buddhikot, and S. Roy. Coexistence-aware dynamic channel allocation for 3.5 ghz shared spectrum systems. In 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pages 1–2. IEEE, mar 2017.

S. Bhattarai, P. Reddy Vaka, and J. M. Park. Thwarting location inference attacks in database-driven spectrum sharing. IEEE Transactions on Cognitive Communications and Networking, 4(2):314–327, jun 2018.

M. A. Clark and K. Psounis. Trading utility for privacy in shared spectrum access systems. IEEE/ACM Transactions on Networking, 26(1):259–273, feb 2018.

S. Chaudhari and D. Cabric. Qos aware power allocation and user selection in massive mimo underlay cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 4(2):220–231, jun 2018.

N. N. Krishnan, R. Kumbhkar, N. B. Mandayam, I. Seskar, and S. Kompella. Coexistence of radar and communication systems in cbrs bands through downlink power control. In MILCOM 2017 - 2017 IEEE Military Communications Conference, pages 713–718. IEEE, oct 2017.

P. Parida, H. S. Dhillon, and P. Nuggehalli. Stochastic geometry-based modeling and analysis of citizens broadband radio service system. IEEE Access, 5:7326–7349, 2017.

I. Parvez, M. G. S. Sriyananda, I. Guvenc, M. Bennis, and A. Sarwat. Cbrs spectrum sharing between lte-u and wifi: A multiarmed bandit approach. Mobile Information Systems, 2016:1–12, 2016.

W. M. Lees, P. Wunderlich, A.and Jeavons, P. D. Hale, and M. R. Souryal. Deep learning classification of 3.5 ghz band spectrograms with applications to spectrum sensing. IEEE Transactions on Cognitive Communications and Networking, pages 1–1, 2019.

X. Zhang, Y. Ma, Y. Gao, and W. Zhang. Autonomous compressive-sensing-augmented spectrum sensing. IEEE Transactions on Vehicular Technology, 67(8):6970–6980, aug 2018.

T. T. Nguyen, M. R. Souryal, A. Sahoo, and T. A. Hall. 3.5 ghz environmental sensing capability detection thresholds and deployment. IEEE Transactions on Cognitive Communications and Networking, 3(3):437–449, sep 2017.

T. T. Nguyen, A. Sahoo, M. R. Souryal, and T. A. Hall. 3.5 ghz environmental sensing capability sensitivity requirements and deployment. In 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pages 1–10. IEEE, mar 2017.

J. G. Torres and R. Bustamante. Analysis of the effects of cqi feedback for lte networks on ns-3. IEEE Latin America Transactions, 13(11):3538–3543, nov 2015.

J. G. Torres and R. Bustamante. Effects of cqi feedback for lte networks. In 2014 IEEE 9th IberoAmerican Congress on Sensors, IBERSENSOR 2014 - Conference Proceedings. IEEE, dec 2014.

Downloads

Published

2021-04-16

How to Cite

Torres, J. G., Bustamante, R., & Caicedo, C. E. . (2021). Literature review of deploying small transmitters on a spectrum sharing scheme. Revista Facultad De Ingeniería Universidad De Antioquia, (103), 116–129. https://doi.org/10.17533/udea.redin.20210426

Most read articles by the same author(s)