Exergy analysis of an automotive engine fueled with natural gas: effect of the conversion kit configuration and the ignition system

Authors

  • Andrés Felipe Agudelo Santamaría Universidad de Antioquia
  • Iván Darío Bedoya Caro Universidad de Antioquia
  • John Ramiro Agudelo Santamaría Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.343230

Keywords:

Exergy analysis, Vehicular natural gas, bi-fuel engines

Abstract

A research program was conducted to study the effects of the configuration of the conversion kit and some ignition parameters on the performance of an automotive bi-fuel engine fueled with natural gas. This work presents the results of an exergy analysis of the engine under five load conditions for each configuration. The most convenient configuration was determined from the exergy efficiency and exergy destruction. It was found that mixer size has no significant effect on engine efficiency whereas its location and the regulator size have an important effect. In addition, some ignition parameters were studied with the selected configuration. It was found that there is a moderate effect on the exergy balance terms. Also, the exergy efficiency could be improved by ca. 11%.

|Abstract
= 92 veces | PDF (ESPAÑOL (ESPAÑA))
= 22 veces|

Downloads

Download data is not yet available.

Author Biographies

Andrés Felipe Agudelo Santamaría, Universidad de Antioquia

Departamento de Ingeniería Mecánica

Iván Darío Bedoya Caro, Universidad de Antioquia

Departamento de Ingeniería Mecánica

John Ramiro Agudelo Santamaría, Universidad de Antioquia

Departamento de Ingeniería Mecánica

References

J. Agudelo, R. Moreno, I. Bedoya. “Influencia de la configuración del kit de conversión en el desempeño mecánico-ambiental de un motor de encendido provocado (MEP) bicombustible gasolina-gas natural vehicular”. Revista Facultad de Ingeniería. Vol. 31. 2004. pp. 102-115.

C. Rakopoulos, E. Giakoumis. “Second-law analyses applied to internal combustion engines operation”. Progress in Energy and Combustion Science. Vol. 32. 2006. pp. 2-47.

R. Gaggioli, P. Petit. “Use the second law, first”. CHEMTECH. Vol. 7. 1977. pp. 496-506.

M. Rosen. “Second-law analysis: Approaches and implications”. International Journal of Energy Research. Vol. 23. 1999. pp. 415-429.

I. Dincer, Y. Cengel. “Energy, entropy and exergy concepts and their roles in thermal engineering”. Entropy. Vol. 3. 2001. pp. 116-149.

A. Bejan. “Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture”. International Journal of Energy Research. Vol. 26. 2002. pp. 545-565.

M. Moran, E. Sciubba. “Exergy analysis: Principles and practice”. Journal for Engineering of Gas Turbines and Power. Vol. 116. 1994 pp. 285-290.

W. Kaiser. “Rudolf diesel and the second law of thermodynamics”. En: German News Magazine. 1997. http://www.germanembassy-india.org/news/june97/76gn16.htm. Consultada en junio de 2004.

J. Caton. “A review of investigations using the second law of thermodynamics to study internal combustion engines”. SAE paper 2000-01-1081. Estados Unidos. 2000.

D. Foster. “An overview of zero-dimensional thermodynamic models for IC engine data analysis”. SAE paper 852070. Estados Unidos. 1985.

H. Shapiro, J. Van Gerpen. “Two zone combustion models for second law analysis of internal combustion engines”. SAE paper 890823. Estados Unidos. 1989.

M. Anderson, D. Assanis, Z. Filipi. “First and second law analyses of a naturally-aspirated, Miller cycle, SI engine with late intake valve closure”. SAE paper 980889. Estados Unidos. 1998.

J. Caton. “Results from the second-law of thermodynamics for a spark-ignition engine using an engine cycle simulation”. En: Proceedings of the 1999 Fall Technical Conference, ASME-ICED Paper N.º 99-ICE-239. Michigan. 1999. pp. 35-49.

J. Caton. “A cycle simulation including the second law of thermodynamics for a spark-ignition engine: Implications of the use of multiple-zones for combustion”. SAE paper 2002-01-0007. Estados Unidos. 2002.

F. Alasfour. “Butanol – A single-cylinder engine study: availability analysis”. Applied Thermal Engineering. Vol. 17. 1997. pp. 537-549.

W. Gallo, L. Milanez. “Exergetic analysis of ethanol and gasoline fueled engines”. SAE paper 920809. Estados Unidos. 1992.

A. Valero, M. Lozano, G. Serra, G. Tsatsaronis, J. Pisa, C. Frangopoulos, M. von Spakovsky. “CGAM Problem: Definition and conventional solution”. Energy. Vol. 19. 1994. pp. 279-286.

V. Stepanov. “Chemical energies and exergies of fuels”. Energy. Vol. 20. 1995. pp. 235-242.

T. Kotas. The exergy method of thermal plant analysis. Florida. Krieger publishing Company. 1995. pp. 44-48, 268.

A. Amell, J. Agudelo, F. Cadavid. “El gas natural: ¿nuevo vector energético?”. Revista Facultad de Ingeniería. Vol. 25. 2002. pp. 36-48.

A. Bejan. Advanced engineering thermodynamics. 2.ª ed. Nueva York, John Wiley & Sons. 1989. p. 394.

J. Heywood. Internal combustion engine fundamentals. Nueva York. McGraw-Hill. 1988. pp. 678-680.

C. Ferguson y A. Kirkpatrick. Internal combustion engines. Applied thermosciences. Nueva York. John Wiley & Sons. 2001. pp. 117-118, 322.

M. Muñoz, F. Payri. Motores de combustión interna alternativos. Madrid. Sección de Publicaciones, Escuela técnica superior de Ingenieros Industriales, Universidad Politécnica de Madrid. 1989. pp. 69-71.

A. Bejan, G. Tsatsaronis, y M. Moran. Thermal design and optimization. Nueva York. John Wiley & Sons. 1996. pp. 519-522.

J. Caton. “On the destruction of availability (exergy) due to combustion processes – with specific application to internal-combustion engines”. Energy. Vol. 25. 2000. pp. 1097-1117.

Published

2006-07-29

How to Cite

Agudelo Santamaría, A. F., Bedoya Caro, . I. D., & Agudelo Santamaría, . J. R. (2006). Exergy analysis of an automotive engine fueled with natural gas: effect of the conversion kit configuration and the ignition system. Revista Facultad De Ingeniería Universidad De Antioquia, (38), 40–52. https://doi.org/10.17533/udea.redin.343230

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 > >> 

You may also start an advanced similarity search for this article.