Esterificación de ácido levulínico mediante procesos catalíticos y fotocatalíticos empleando dióxido de titanio fluorado
DOI:
https://doi.org/10.17533/udea.redin.20210531Palabras clave:
Catálisis, fotocatálisis, ácido levulínico, esterificación, TiO2-FResumen
En el presente trabajo de investigación se estudió la síntesis, caracterización y actividad de materiales de dióxido de titanio fluorados (TiO2-F 1% y TiO2-F 5%) modificados in-situ a través del método de sol-gel, en la reacción de esterificación de ácido levulínico conducida tanto por vía fotocatalítica como catalítica. Las propiedades fisicoquímicas de los materiales se determinaron mediante estudios por difracción de rayos X, espectrofotometría UV-Vis de reflectancia difusa, análisis térmico y adsorción de piridina. Se encontró que la inclusión del anión fluoruro causa una disminución en la conversión del ácido levulínico por vía fotocatalítica; sin embargo, en la activación por vía catalítica se observó un ligero incremento en la conversión del ácido levulínico empleando los materiales fluorados. Finalmente, la reacción en presencia de disolventes halogenados (CCl4) mediante reacción de fotólisis favorece una conversión del 100% en 1h.
Descargas
Citas
X. Li and et al., “Simultaneous catalytic esterification of carboxylic acids and acetalisation of aldehydes in a fast pyrolysis bio-oil from mallee biomass,” Fuel, vol. 90, no. 7, Jul., 2011. [Online]. Available: https://doi.org/10.1016/j.fuel.2011.03.025
A. Rodríguez, M. Brijado, L. Rache, L. Silva, and L. Esteves, “Reacciones comunes de Furfural en procesos escalables de Biomasa Residual,” Ciencia en Desarrollo, vol. 11, no. 1, Jan., 2020. [Online]. Available: https://doi.org/10.19053/01217488.v11.n1.
I. Thapa and et al., “Efficient green catalysis for the conversion of fructose to levulinic acid,” Applied Catalysis A: General, vol. 539, Jun. 5, 2017. [Online]. Available: https://doi.org/10.1016/j.apcata.2017.03.016
H. Bart, J. Reidetschlager, K. Schatka, and A. Lehmann, “Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis,” Ind. Eng. Chem. Res., vol. 33, no. 1, Jan. 1, 1994. [Online]. Available: https://doi.org/10.1021/ie00025a004
J.Lilja and et al., “Esterification of different acids over heterogeneous and homogeneous catalysts and correlation with the Taft equation,” Journal of Molecular Catalysis A: Chemical, vol. 182-183, May. 31, 2002. [Online]. Available: https://doi.org/10.1016/S1381-1169(01)00495-2
S.Dharne and V.Bokade, “Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay,” Journal of Natural Gas Chemistry, vol. 20, no. 1, Jan., 2011. [Online]. Available: https://doi.org/10.1016/S1003-9953(10)60147-8
S. Sankar, V. Babu, R.Chada, D. Raju, and S. Rama, “Clean synthesis of alkyl levulinates from levulinic acid over one pot synthesized WO3-SBA-16 catalyst,” Journal of Molecular Catalysis A: Chemical, vol. 426, Jan., 2017. [Online]. Available: https://doi.org/10.1016/j.molcata.2016.10.032
L. Negahdar, M. Al-Shaal, F.Holzhäuser, and R. Palkovits, “Kinetic analysis of the catalytic hydrogenation of alkyl levulinates to γ-valerolactone,” Chemical Engineering Science, vol. 158, Feb. 2, 2017. [Online]. Available: https://doi.org/10.1016/j.ces.2016.11.007
M. Silva, A. Lemos, F. Lima, A. Mendes, and M. Hernandez, “Heterogeneous Catalysts Based on H3PW12O40 Heteropolyacid for Free Fatty Acids Esterification,” Intech Open, Nov. 9, 2011. [Online]. Available: http://doi.org/10.5772/26847
M. Mesa and et al., “Degradación fotocatalítica de Fenol, Catecol e Hidroquinona sobre nanomateriales Au-ZnO,” Revista Facultad de Ingeniería Universidad de Antioquia, vol. 94, 2020. [Online]. Available: https://doi.org/10.17533/udea.redin.20190513.
P. Verma, K. Kaur, R. Kumar, and A. PalToor, “Esterification of acetic acid to methyl acetate using activated TiO2 under UV light irradiation at ambient temperature,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 336, Mar. 1, 2017. [Online]. Available:
https://doi.org/10.1016/j.jphotochem.2016.11.021
M. Cardoso, A. Posteral, A. Kopp, and C. Pérez, “Application of hydrothermally produced TiO2 nanotubes in photocatalytic esterification of oleic acid,” Materials Science and Engineering: B, vol. 206, Apr., 2016. [Online]. Available: https://doi.org/10.1016/j.mseb.2016.01.001
G. Corro, U. Pal, and N. Telleza, “Biodiesel production from Jatropha curcas crude oil using ZnO/SiO2 photocatalyst for free fatty acids esterification,” Applied Catalysis B: Environmental, vol. 129, Jan. 17, 2013. [Online]. Available: https://doi.org/10.1016/j.apcatb.2012.09.004
J. Wen and et al., “Photocatalysis fundamentals and Surface modification of TiO2 nanomaterials,” Chinese Journal of Catalysis, vol. 36, no. 12, Dec., 2015. [Online]. Available: https://doi.org/10.1016/S1872-2067(15)60999-8
J. Murcia and et al., “Methylene blue degradation over M-TiO2 photocatalysts (M= Au or Pt),” Ciencia en Desarrollo, vol. 8, no. 1, Jan., 2017. [Online]. Available: https://doi.org/10.19053/01217488.v8.n1.2017.5352
L. Kőrösi and et al., “Structural properties and photocatalytic behaviour of phosphate-modified nanocrystalline titania films,” Applied Catalysis B: Environmental, vol. 77, no. 1-2, Nov. 30, 2007. [Online]. Available: https://doi.org/10.1016/j.apcatb.2007.07.019
K. Yang, Y. Dai, B. Huang, and M. Whangbo, “Density Functional Characterization of the Band Edges, the Band Gap States, and the Preferred Doping Sites of Halogen-Doped TiO2,” Chemistry of Materials, vol. 20, no. 20, Sept. 26, 2008. [Online]. Available: https://doi.org/10.1021/cm801741m
J. Yu, Yu, Ho, Jiang, and Zhang, “Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders,” Chemistry of Materials, vol. 14, no. 9, 2002. [Online]. Available: https://doi.org/10.1021/cm020027c
J. Yu, W. Wang, B. Cheng, and B. Su, “Enhancement of Photocatalytic Activity of Mesporous TiO2 Powders by Hydrothermal Surface Fluorination Treatment,” The Journal of Physical Chemistry C, vol. 113, no. 16, 2009. [Online]. Available: https://doi.org/10.1021/jp900136q
J. Murcia, M.Hidalgo, J. Navío, J.Araña, and J.Rodríguez, “Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition,” Applied Catalysis B: Environmental, vol. 179, Dec., 2015. [Online]. Available: https://doi.org/10.1016/j.apcatb.2015.05.040
V. Guzmán, Y. Ortega, J. Salinas, A. López, and V. Collins, “TiO2 Films Synthesis over Polypropylene by Sol-Gel Assisted with Hydrothermal Treatment for the Photocatalytic Propane Degradation,” Green and Sustainable Chemistry, vol. 4, no. 3, 2014. [Online]. Available: http://DOI:10.4236/gsc.2014.43017
K. Murugan, T.Rao, G. Narashima, A. Gandhi, and B. Murty, “Effect of dehydration rate on non-hydrolytic TiO2 thin film processing: Structure, optical and photocatalytic performance studies,” Materials Chemistry and Physics, vol. 129, no. 3, Oct. 3, 2011. [Online]. Available: https://doi.org/10.1016/j.matchemphys.2011.05.011
L. Kiyomi, R. Monteiro, N. Sanches, L. Dias, and O. Sala, “TiO2 with a high sulfate content—thermogravimetric analysis, determination of acid sites by infrared spectroscopy and catalytic activity,” Catalysis Today, vol. 85, no. 1, Sep. 30, 2003. [Online]. Available: https://doi.org/10.1016/S0920-5861(03)00195-0
S. Li and et al., “Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes,” Applied Catalysis B: Environmental, vol. 170-171, Jul., 2015. [Online]. Available: https://doi.org/10.1016/j.apcatb.2015.01.022
K. Nandiwale and V. Bokade, “Esterification of Renewable Levulinic Acid to n-Butyl Levulinate over Modified H-ZSM-5,” Chem. Eng. Technol., vol. 38, no. 2, Jan. 27, 2015. [Online]. Available: https://doi.org/10.1002/ceat.201400326
M. Al-Shaal and et al., “Catalytic upgrading of α-angelica lactone to levulinic acid esters under mild conditions over heterogeneous catalysts,” Catal. Sci. Technol., vol. 5, Jul. 15, 2015. [Online]. Available: http://doi.org/10.1039/C5CY00446B
J. Ru, C. Hsu, and M. Jain, “Efficient photolytic esterification of carboxylic acids with alcohols in perhalogenated methane,” Tetrahedron Letters, vol. 45, no. 26, Jun., 2004. [Online]. Available: https://doi.org/10.1016/j.tetlet.2004.04.155
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Revista Facultad de Ingeniería Universidad de Antioquia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.