Esterification of levulinic acid via catalytic and photocatalytic processes using fluorinated titanium dioxide materials

Keywords: Catalysis, photocatalysis, levulinic acid, esterification, TiO2-F


This study evaluated the synthesis, characterization, and activity of fluorinated titanium dioxide materials (TiO2-F 1% and TiO2-F 5%) in-situ modified by the sol-gel method in the esterification reaction of levulinic acid conducted by catalytic and photocatalytic processes. The physicochemical properties of the materials were determined by X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, thermal analysis, and pyridine adsorption. It was found that the inclusion of fluoride anion causes a decrease in the levulinic acid conversion by photocatalytic reaction; however, in the catalytic activation, a slight increase in the conversion using the fluoride materials was observed. Finally, the reaction in the presence of halogenated solvents (CCl4) by photolysis reaction favors a conversion of 100% in 1h.

= 135 veces | PDF
= 104 veces|


Download data is not yet available.

Author Biographies

Claudia Patricia Castañeda Martínez, Universidad Pedagógica y Tecnológica de Colombia

Professor, Chemical Sciences School

José Jobanny Martínez Zambrano, Universidad Pedagógica y Tecnológica de Colombia

Professor, Chemical Sciences School

Andrés Camilo Mesa, Universidad Pedagógica y Tecnológica de Colombia

Student, Chemical Sciences School


X. Li and et al., “Simultaneous catalytic esterification of carboxylic acids and acetalisation of aldehydes in a fast pyrolysis bio-oil from mallee biomass,” Fuel, vol. 90, no. 7, Jul., 2011. [Online]. Available:

A. Rodríguez, M. Brijado, L. Rache, L. Silva, and L. Esteves, “Reacciones comunes de Furfural en procesos escalables de Biomasa Residual,” Ciencia en Desarrollo, vol. 11, no. 1, Jan., 2020. [Online]. Available:

I. Thapa and et al., “Efficient green catalysis for the conversion of fructose to levulinic acid,” Applied Catalysis A: General, vol. 539, Jun. 5, 2017. [Online]. Available:

H. Bart, J. Reidetschlager, K. Schatka, and A. Lehmann, “Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis,” Ind. Eng. Chem. Res., vol. 33, no. 1, Jan. 1, 1994. [Online]. Available:

J.Lilja and et al., “Esterification of different acids over heterogeneous and homogeneous catalysts and correlation with the Taft equation,” Journal of Molecular Catalysis A: Chemical, vol. 182-183, May. 31, 2002. [Online]. Available:

S.Dharne and V.Bokade, “Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay,” Journal of Natural Gas Chemistry, vol. 20, no. 1, Jan., 2011. [Online]. Available:

S. Sankar, V. Babu, R.Chada, D. Raju, and S. Rama, “Clean synthesis of alkyl levulinates from levulinic acid over one pot synthesized WO3-SBA-16 catalyst,” Journal of Molecular Catalysis A: Chemical, vol. 426, Jan., 2017. [Online]. Available:

L. Negahdar, M. Al-Shaal, F.Holzhäuser, and R. Palkovits, “Kinetic analysis of the catalytic hydrogenation of alkyl levulinates to γ-valerolactone,” Chemical Engineering Science, vol. 158, Feb. 2, 2017. [Online]. Available:

M. Silva, A. Lemos, F. Lima, A. Mendes, and M. Hernandez, “Heterogeneous Catalysts Based on H3PW12O40 Heteropolyacid for Free Fatty Acids Esterification,” Intech Open, Nov. 9, 2011. [Online]. Available:

M. Mesa and et al., “Degradación fotocatalítica de Fenol, Catecol e Hidroquinona sobre nanomateriales Au-ZnO,” Revista Facultad de Ingeniería Universidad de Antioquia, vol. 94, 2020. [Online]. Available:

P. Verma, K. Kaur, R. Kumar, and A. PalToor, “Esterification of acetic acid to methyl acetate using activated TiO2 under UV light irradiation at ambient temperature,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 336, Mar. 1, 2017. [Online]. Available:

M. Cardoso, A. Posteral, A. Kopp, and C. Pérez, “Application of hydrothermally produced TiO2 nanotubes in photocatalytic esterification of oleic acid,” Materials Science and Engineering: B, vol. 206, Apr., 2016. [Online]. Available:

G. Corro, U. Pal, and N. Telleza, “Biodiesel production from Jatropha curcas crude oil using ZnO/SiO2 photocatalyst for free fatty acids esterification,” Applied Catalysis B: Environmental, vol. 129, Jan. 17, 2013. [Online]. Available:

J. Wen and et al., “Photocatalysis fundamentals and Surface modification of TiO2 nanomaterials,” Chinese Journal of Catalysis, vol. 36, no. 12, Dec., 2015. [Online]. Available:

J. Murcia and et al., “Methylene blue degradation over M-TiO2 photocatalysts (M= Au or Pt),” Ciencia en Desarrollo, vol. 8, no. 1, Jan., 2017. [Online]. Available:

L. Kőrösi and et al., “Structural properties and photocatalytic behaviour of phosphate-modified nanocrystalline titania films,” Applied Catalysis B: Environmental, vol. 77, no. 1-2, Nov. 30, 2007. [Online]. Available:

K. Yang, Y. Dai, B. Huang, and M. Whangbo, “Density Functional Characterization of the Band Edges, the Band Gap States, and the Preferred Doping Sites of Halogen-Doped TiO2,” Chemistry of Materials, vol. 20, no. 20, Sept. 26, 2008. [Online]. Available:

J. Yu, Yu, Ho, Jiang, and Zhang, “Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders,” Chemistry of Materials, vol. 14, no. 9, 2002. [Online]. Available:

J. Yu, W. Wang, B. Cheng, and B. Su, “Enhancement of Photocatalytic Activity of Mesporous TiO2 Powders by Hydrothermal Surface Fluorination Treatment,” The Journal of Physical Chemistry C, vol. 113, no. 16, 2009. [Online]. Available:

J. Murcia, M.Hidalgo, J. Navío, J.Araña, and J.Rodríguez, “Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition,” Applied Catalysis B: Environmental, vol. 179, Dec., 2015. [Online]. Available:

V. Guzmán, Y. Ortega, J. Salinas, A. López, and V. Collins, “TiO2 Films Synthesis over Polypropylene by Sol-Gel Assisted with Hydrothermal Treatment for the Photocatalytic Propane Degradation,” Green and Sustainable Chemistry, vol. 4, no. 3, 2014. [Online]. Available: http://DOI:10.4236/gsc.2014.43017

K. Murugan, T.Rao, G. Narashima, A. Gandhi, and B. Murty, “Effect of dehydration rate on non-hydrolytic TiO2 thin film processing: Structure, optical and photocatalytic performance studies,” Materials Chemistry and Physics, vol. 129, no. 3, Oct. 3, 2011. [Online]. Available:

L. Kiyomi, R. Monteiro, N. Sanches, L. Dias, and O. Sala, “TiO2 with a high sulfate content—thermogravimetric analysis, determination of acid sites by infrared spectroscopy and catalytic activity,” Catalysis Today, vol. 85, no. 1, Sep. 30, 2003. [Online]. Available:

S. Li and et al., “Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes,” Applied Catalysis B: Environmental, vol. 170-171, Jul., 2015. [Online]. Available:

K. Nandiwale and V. Bokade, “Esterification of Renewable Levulinic Acid to n-Butyl Levulinate over Modified H-ZSM-5,” Chem. Eng. Technol., vol. 38, no. 2, Jan. 27, 2015. [Online]. Available:

M. Al-Shaal and et al., “Catalytic upgrading of α-angelica lactone to levulinic acid esters under mild conditions over heterogeneous catalysts,” Catal. Sci. Technol., vol. 5, Jul. 15, 2015. [Online]. Available:

J. Ru, C. Hsu, and M. Jain, “Efficient photolytic esterification of carboxylic acids with alcohols in perhalogenated methane,” Tetrahedron Letters, vol. 45, no. 26, Jun., 2004. [Online]. Available:

How to Cite
Castañeda Martínez C. P., Martínez Zambrano J. J., & Mesa A. C. (2021). Esterification of levulinic acid via catalytic and photocatalytic processes using fluorinated titanium dioxide materials. Revista Facultad De Ingeniería Universidad De Antioquia.
Research paper