Esterification of levulinic acid via catalytic and photocatalytic processes using fluorinated titanium dioxide materials

Authors

  • Claudia Patricia Castañeda Martínez Universidad Pedagógica y Tecnológica de Colombia https://orcid.org/0000-0002-5360-2756
  • José Jobanny Martínez Zambrano Universidad Pedagógica y Tecnológica de Colombia https://orcid.org/0000-0002-4906-7121
  • Andrés Camilo Mesa Universidad Pedagógica y Tecnológica de Colombia

DOI:

https://doi.org/10.17533/udea.redin.20210531

Keywords:

Catalysis, photocatalysis, levulinic acid, esterification, TiO2-F

Abstract

This study evaluated the synthesis, characterization, and activity of fluorinated titanium dioxide materials (TiO2-F 1% and TiO2-F 5%) in-situ modified by the sol-gel method in the esterification reaction of levulinic acid conducted by catalytic and photocatalytic processes. The physicochemical properties of the materials were determined by X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, thermal analysis, and pyridine adsorption. It was found that the inclusion of fluoride anion causes a decrease in the levulinic acid conversion by photocatalytic reaction; however, in the catalytic activation, a slight increase in the conversion using the fluoride materials was observed. Finally, the reaction in the presence of halogenated solvents (CCl4) by photolysis reaction favors a conversion of 100% in 1h.

|Abstract
= 667 veces | HTML
= 0 veces| | PDF
= 427 veces|

Downloads

Download data is not yet available.

Author Biographies

Claudia Patricia Castañeda Martínez, Universidad Pedagógica y Tecnológica de Colombia

Professor, Chemical Sciences School

José Jobanny Martínez Zambrano, Universidad Pedagógica y Tecnológica de Colombia

Professor, Chemical Sciences School

Andrés Camilo Mesa, Universidad Pedagógica y Tecnológica de Colombia

Student, Chemical Sciences School

References

X. Li and et al., “Simultaneous catalytic esterification of carboxylic acids and acetalisation of aldehydes in a fast pyrolysis bio-oil from mallee biomass,” Fuel, vol. 90, no. 7, Jul., 2011. [Online]. Available: https://doi.org/10.1016/j.fuel.2011.03.025

A. Rodríguez, M. Brijado, L. Rache, L. Silva, and L. Esteves, “Reacciones comunes de Furfural en procesos escalables de Biomasa Residual,” Ciencia en Desarrollo, vol. 11, no. 1, Jan., 2020. [Online]. Available: https://doi.org/10.19053/01217488.v11.n1.

I. Thapa and et al., “Efficient green catalysis for the conversion of fructose to levulinic acid,” Applied Catalysis A: General, vol. 539, Jun. 5, 2017. [Online]. Available: https://doi.org/10.1016/j.apcata.2017.03.016

H. Bart, J. Reidetschlager, K. Schatka, and A. Lehmann, “Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis,” Ind. Eng. Chem. Res., vol. 33, no. 1, Jan. 1, 1994. [Online]. Available: https://doi.org/10.1021/ie00025a004

J.Lilja and et al., “Esterification of different acids over heterogeneous and homogeneous catalysts and correlation with the Taft equation,” Journal of Molecular Catalysis A: Chemical, vol. 182-183, May. 31, 2002. [Online]. Available: https://doi.org/10.1016/S1381-1169(01)00495-2

S.Dharne and V.Bokade, “Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay,” Journal of Natural Gas Chemistry, vol. 20, no. 1, Jan., 2011. [Online]. Available: https://doi.org/10.1016/S1003-9953(10)60147-8

S. Sankar, V. Babu, R.Chada, D. Raju, and S. Rama, “Clean synthesis of alkyl levulinates from levulinic acid over one pot synthesized WO3-SBA-16 catalyst,” Journal of Molecular Catalysis A: Chemical, vol. 426, Jan., 2017. [Online]. Available: https://doi.org/10.1016/j.molcata.2016.10.032

L. Negahdar, M. Al-Shaal, F.Holzhäuser, and R. Palkovits, “Kinetic analysis of the catalytic hydrogenation of alkyl levulinates to γ-valerolactone,” Chemical Engineering Science, vol. 158, Feb. 2, 2017. [Online]. Available: https://doi.org/10.1016/j.ces.2016.11.007

M. Silva, A. Lemos, F. Lima, A. Mendes, and M. Hernandez, “Heterogeneous Catalysts Based on H3PW12O40 Heteropolyacid for Free Fatty Acids Esterification,” Intech Open, Nov. 9, 2011. [Online]. Available: http://doi.org/10.5772/26847

M. Mesa and et al., “Degradación fotocatalítica de Fenol, Catecol e Hidroquinona sobre nanomateriales Au-ZnO,” Revista Facultad de Ingeniería Universidad de Antioquia, vol. 94, 2020. [Online]. Available: https://doi.org/10.17533/udea.redin.20190513.

P. Verma, K. Kaur, R. Kumar, and A. PalToor, “Esterification of acetic acid to methyl acetate using activated TiO2 under UV light irradiation at ambient temperature,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 336, Mar. 1, 2017. [Online]. Available:

https://doi.org/10.1016/j.jphotochem.2016.11.021

M. Cardoso, A. Posteral, A. Kopp, and C. Pérez, “Application of hydrothermally produced TiO2 nanotubes in photocatalytic esterification of oleic acid,” Materials Science and Engineering: B, vol. 206, Apr., 2016. [Online]. Available: https://doi.org/10.1016/j.mseb.2016.01.001

G. Corro, U. Pal, and N. Telleza, “Biodiesel production from Jatropha curcas crude oil using ZnO/SiO2 photocatalyst for free fatty acids esterification,” Applied Catalysis B: Environmental, vol. 129, Jan. 17, 2013. [Online]. Available: https://doi.org/10.1016/j.apcatb.2012.09.004

J. Wen and et al., “Photocatalysis fundamentals and Surface modification of TiO2 nanomaterials,” Chinese Journal of Catalysis, vol. 36, no. 12, Dec., 2015. [Online]. Available: https://doi.org/10.1016/S1872-2067(15)60999-8

J. Murcia and et al., “Methylene blue degradation over M-TiO2 photocatalysts (M= Au or Pt),” Ciencia en Desarrollo, vol. 8, no. 1, Jan., 2017. [Online]. Available: https://doi.org/10.19053/01217488.v8.n1.2017.5352

L. Kőrösi and et al., “Structural properties and photocatalytic behaviour of phosphate-modified nanocrystalline titania films,” Applied Catalysis B: Environmental, vol. 77, no. 1-2, Nov. 30, 2007. [Online]. Available: https://doi.org/10.1016/j.apcatb.2007.07.019

K. Yang, Y. Dai, B. Huang, and M. Whangbo, “Density Functional Characterization of the Band Edges, the Band Gap States, and the Preferred Doping Sites of Halogen-Doped TiO2,” Chemistry of Materials, vol. 20, no. 20, Sept. 26, 2008. [Online]. Available: https://doi.org/10.1021/cm801741m

J. Yu, Yu, Ho, Jiang, and Zhang, “Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders,” Chemistry of Materials, vol. 14, no. 9, 2002. [Online]. Available: https://doi.org/10.1021/cm020027c

J. Yu, W. Wang, B. Cheng, and B. Su, “Enhancement of Photocatalytic Activity of Mesporous TiO2 Powders by Hydrothermal Surface Fluorination Treatment,” The Journal of Physical Chemistry C, vol. 113, no. 16, 2009. [Online]. Available: https://doi.org/10.1021/jp900136q

J. Murcia, M.Hidalgo, J. Navío, J.Araña, and J.Rodríguez, “Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition,” Applied Catalysis B: Environmental, vol. 179, Dec., 2015. [Online]. Available: https://doi.org/10.1016/j.apcatb.2015.05.040

V. Guzmán, Y. Ortega, J. Salinas, A. López, and V. Collins, “TiO2 Films Synthesis over Polypropylene by Sol-Gel Assisted with Hydrothermal Treatment for the Photocatalytic Propane Degradation,” Green and Sustainable Chemistry, vol. 4, no. 3, 2014. [Online]. Available: http://DOI:10.4236/gsc.2014.43017

K. Murugan, T.Rao, G. Narashima, A. Gandhi, and B. Murty, “Effect of dehydration rate on non-hydrolytic TiO2 thin film processing: Structure, optical and photocatalytic performance studies,” Materials Chemistry and Physics, vol. 129, no. 3, Oct. 3, 2011. [Online]. Available: https://doi.org/10.1016/j.matchemphys.2011.05.011

L. Kiyomi, R. Monteiro, N. Sanches, L. Dias, and O. Sala, “TiO2 with a high sulfate content—thermogravimetric analysis, determination of acid sites by infrared spectroscopy and catalytic activity,” Catalysis Today, vol. 85, no. 1, Sep. 30, 2003. [Online]. Available: https://doi.org/10.1016/S0920-5861(03)00195-0

S. Li and et al., “Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes,” Applied Catalysis B: Environmental, vol. 170-171, Jul., 2015. [Online]. Available: https://doi.org/10.1016/j.apcatb.2015.01.022

K. Nandiwale and V. Bokade, “Esterification of Renewable Levulinic Acid to n-Butyl Levulinate over Modified H-ZSM-5,” Chem. Eng. Technol., vol. 38, no. 2, Jan. 27, 2015. [Online]. Available: https://doi.org/10.1002/ceat.201400326

M. Al-Shaal and et al., “Catalytic upgrading of α-angelica lactone to levulinic acid esters under mild conditions over heterogeneous catalysts,” Catal. Sci. Technol., vol. 5, Jul. 15, 2015. [Online]. Available: http://doi.org/10.1039/C5CY00446B

J. Ru, C. Hsu, and M. Jain, “Efficient photolytic esterification of carboxylic acids with alcohols in perhalogenated methane,” Tetrahedron Letters, vol. 45, no. 26, Jun., 2004. [Online]. Available: https://doi.org/10.1016/j.tetlet.2004.04.155

Downloads

Published

2021-05-24

How to Cite

Castañeda Martínez, C. P., Martínez Zambrano, J. J., & Mesa, A. C. . (2021). Esterification of levulinic acid via catalytic and photocatalytic processes using fluorinated titanium dioxide materials. Revista Facultad De Ingeniería Universidad De Antioquia, (105), 29–36. https://doi.org/10.17533/udea.redin.20210531