Diseño de superficies de control para aeronaves radiocontroladas. Caso: prototipo clase Micro SAE Aero Design
DOI:
https://doi.org/10.17533/udea.redin.20210740Palabras clave:
Aeronave, aerodinámica, XFLR5, metodología de diseño, dinámica de fluidosResumen
Se presenta una metodología para el diseño de superficies de control primarias, alerones, timón de dirección y elevador, en aeromodelos experimentales radiocontrolados. La metodología se basa en la propuesta y estandarización de los análisis mecánicos y aerodinámicos requeridos para el dimensionamiento de cada superficie de control, en función de los objetivos de la competencia SAE (Society of Automotive Engineers) Aero Design en su categoría Micro. Para ello fue necesaria la obtención de las variables de diseño a partir de resultados empíricos previamente descritos en la bibliografía sobre diseño aeronáutico, así como del empleo de programas de dinámica de fluidos computacional y de los estándares que regulan la controlabilidad de las aeronaves. La secuencia de iteraciones necesarias en el diseño se automatizó por medio de un código escrito en lenguaje C++ con la finalidad de obtener las variables de diseño óptimas de cada superficie, reduciendo posibles errores de cálculo y el tiempo invertido en el proceso de diseño. La aplicación de la metodología al último diseño construido ayudó a disminuir la relación entre el peso total de los sistemas de control respecto al peso en vacío de la aeronave a un mínimo de 3,4%.
Descargas
Citas
About sae aero design series. SAE International. [Online]. Available: https://www.sae.org/attend/student-events/sae-aero-design-knowledge/about
“2020 collegiate design series. sae aero design rules,” SAE Aero Design, Tech. Rep., 2020. [Online]. Available: http://www.saeaerodesign.com/cdsweb/gen/DownloadDocument.aspx?DocumentID=046e30f2-a5f2-462d-bc6b-261475056c2b
K. A. Demir, H. Cicibas, and N. Arica, “Unmanned aerial vehicle domain: Areas of research,” Defence Science Journal, vol. 65, no. 4, Jul. 4, 2015. [Online]. Available: https://n9.cl/pjhal
L. D. Santos, G. Araújo, B. Souza, and A. Delon, “Use of remotely piloted aircraft in precision agriculture: a review,” DYNA Revista de la Facultad de Minas de la Universidad Nacional de Colombia, vol. 86, no. 210, Sep. 2019. [Online]. Available: https://revistas.unal.edu.co/index.php/dyna/article/view/74701/74208
M. Fioriti and et al., “Multidisciplinary aircraft integration within a collaborative and distributed design framework using the agile paradign,” Progress in Aerospace Sciences, vol. 119, no. 100648, Nov. 2020. [Online]. Available: https://doi.org/10.1016/j.paerosci.2020. 100648
A. Kumar. (2010) Aircraft design. Cambridge University Press. [Online]. Available: https://n9.cl/ptsaw
N. Cross. (2005) Engineering design methods. strategies for product design. John Wiley and Sons, ltd. [Online]. Available: https://fliphtml5.com/zroi/mnlp/basic
C. Johansson, M. Derelöv, and J. Ölvander, “How to use an optimization based method capable of balancing safety, reliability, and weight in an aircraft design process,” Nuclear Engineering and Technology, vol. 49, no. 2, Mar. 2017. [Online]. Available: https://doi.org/10.1016/j.net.2017.01.006
G. Dimitriadis, “Aircraft desing lecture 9: Stability and control,” Université de Liège. [Online]. Available: http://www.ltascm3.ulg.ac.be/AERO00231/ConceptionAeroStabilite.pdf
N. Qin and et al., “Aerodynamic considerations of blended wing body aircraft,” Progress in Aerospace Sciences, vol. 40, no. 6, Aug. 2004. [Online]. Available: https://doi.org/10.1016/j.paerosci.2004.08.001
H. K. Fathy, J. A. Reyer, P. Y. Papalambros, and A. G. Ulsoy, “On the coupling between the plant and controller optimization problems,” Proceedings of the American Control Conference, Arlington, VA, 2001. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/946008
Y. Denieu, J. Bordeneuve, D. Alazard, C. Toussaint, and G. Taquin, “Integrated design of flight control surfaces and laws for new aircraft configurations,” IFAC PapersOnLine, vol. 50, no. 1, Jul. 2017. [Online]. Available: https://doi.org/10.1016/j.ifacol.2017.08.2085
L. L. Green and A. M. Spence, “Applications of computational methods for dynamic stability and control derivatives,” in 42nd AIAA Aerospace Sciences Meeting and Exhibit, A. M. Paper, Ed. Reno, NV: ARC Aerospace Research Central, 2004, pp. 1–16. [Online]. Available: https://doi.org/10.2514/6.2004-377
F. Nicolosi, D. Ciliberti, P. D. Vecchia, and S. Corcione, “Experimental analysis of aircraft directional control effectiveness,” Aerospace Science and Technology, vol. 106, no. 106099, Nov. 2020. [Online]. Available: https://doi.org/10.1016/j.ast.2020.106099
A. Rizzi, “Modeling and simulating aircraft stability and control the simsac project,” Progress in Aerospace Sciences, vol. 47, no. 8, Nov. 2011. [Online]. Available: https://doi.org/10.1016/j.paerosci.2011. 08.004
F. K. Owen and A. K. Owen, “Measurement and assessment of wind tunnel flow quality,” Progress in Aerospace Sciences, vol. 44, no. 5, Jul. 2008. [Online]. Available: https://doi.org/10.1016/j.paerosci. 2008.04.002
V. E. Gasparetto, M. R. Machado, and S. Carneiro, “Experimental modal analysis of an aircraft wing prototype for sae aerodesign competition,” DYNA Revista de la Facultad de Minas de la Universidad Nacional de Colombia, vol. 87, no. 214, Sep. 2020. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S001273532020000300100
S. J. Stebbins, E. Loth, A. P. Broeren, and M. Potapczuk, “Review of computational methods for aerodynamic analysis of iced lifting surfaces,” Progress in Aerospace Siences, vol. 111, no. 100583, Nov. 2019. [Online]. Available: https://doi.org/10.1016/j.paerosci.2019.100583
G. M. Quijada and P. J. Boschetti. (2015) Linear computational fluid dynamic analysis of dynamic ground effect of a wing in sink and flare maneuvers. American Institute of Aeronautics and Astronautics. [Online]. Available: https://doi.org/10.2514/6.2015-0518
O. González, G. Martínez, and C. A. Graciano, “Evaluación paramétrica de las principales variables geométricas en el diseño de un tren de aterrizaje para un avión no tripulado utilizando el método de los elementos finitos,” Revista UIS Ingenierías, vol. 19, no. 2, Mar. 30, 2020. [Online]. Available: https://doi.org/10.18273/revuin.v19n2-2020017
J. Slotnick and et al., “Cfd vision 2030 study: A path to revolutionary computational aerosciences,” NASA, Tech. Rep., Mar. 2014. [Online]. Available: https://ntrs.nasa.gov/citations/20140003093
A. Benaouali and S. Kachel, “Multidisciplinary design optimization of aircraft wing using commercial software integration,” Aerospace Science and Technology, vol. 92, Sep. 2019. [Online]. Available: https://doi.org/10.1016/j.ast.2019.06.040
André. (2020) Xflr5 general description. [Online]. Available: https://sourceforge.net/projects/xflr5/files/
“Federal aviation administration, department of transportation. part 23. airworthiness standards normal category airplanes,” in Title 14. Aeronautics and Space. Electronic Code of Federal Regulations. [Online]. Available: https://www.ecfr.gov/cgibin/textidxSID=2869bfb277872cfe179c9243991267f4&mc=true&tpl=/ecfrbrowse/Title14/14tab_02.tpl
Mil–F-8785C Military Specification Flying Qualities of Piloted Airplanes, Department of the Air Force, 1969. [Online]. Available: https://www.abbottaerospace.com/downloads/mil-f-8785c-flying-qualities-of-pilotedairplanes/
(2016) Airplane flying handbook. U.S. Department of Transportation. Federal Aviation Administration. Oklahoma. [Online]. Available: https://n9.cl/54q0k
M. H. Sadraey. (2013) Aircraft design. a systems engineering approach. John Wiley & Sons. Ltd. [Online]. Available: https://www.wiley.com/enru/Aircraft+Design%3A+A+Systems+Engineering+Approach-p-9781119953401
E. L. Houghton and P. W. Carpenter. (2003) Aerodynamics for engineering students. Butterworth-Heinemann. [Online]. Available: https://soaneemrana.org/onewebmedia/Aerodynamics---Houghton&Carpenter.pdf
R. A. Ávila and V. A. Gómez. Universidad Metropolitana. Caracas, VEN. [Online]. Available: https://acortar.link/we9aq4
D. P. Raymer. (1992) Aircraft design. a conceptual approach. American Institute of Aeronautics and Astronautics, Inc. [Online]. Available: https://acortar.link/YPHYX
M. Sadraey and R. Colgren, “A systems engineering approach to the design of control surfaces for uavs,” 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2007. [Online]. Available: https://arc.aiaa.org/doi/10.2514/6.2007-660
“Introduction to aircraft stability and control course notes for m&ae 5070,” Cornell University, Sibley School of Mechanical & Aerospace Engineering, Ithaca, NY, 2011. [Online]. Available: https://courses.cit.cornell.edu/mae5070/Caughey_2011_04.pdf
L. Marquez and et al., “2020 sae aero design east design report universidad metropolitana,” Universidad Metropolitana, Caracas, VE, Tech. Rep., 2020. [Online]. Available: https://www.researchgate.net/publication/350567497_2020_SAE_AERO_DESIGN_EAS_DESIGN_REPORT_UNIVERSIDAD_METROPOLITANA
C. Wolowicz and R. Yancey, “Lateral-directional aerodynamic characteristics of light, twin-engine, propeller driven airplanes,” NASA, Washington, DC, Tech. Rep., Oct. 1972. [Online]. Available: https://ntrs.nasa.gov/citations/19730002289
J. Grasmeyer, “Stability and control derivative estimation and engine-out analysis,” Virginia Polytechnic Institute and State University, Blacksburg, VA, Tech. Rep., Jan. 1998. [Online]. Available: http://www.dept.aoe.vt.edu/~mason/Mason_f/LDstabdoc.pdf
V. Viera and et al., “2018 sae aero design east design report universidad metropolitana,” Universidad Metropolitana, Caracas, VE, Tech. Rep., 2018. [Online]. Available: https://www.researchgate.net/publication/350567515_2018_SAE_AERO_DESIGN_EAS_DESIGN_REPORT_UNIVERSIDAD_METROPOLITANA
A. Aguilera and et al., “2019 sae aero design east design report universidad metropolitana,” Universidad Metropolitana, Caracas, VE, Tech. Rep., 2019. [Online]. Available: https://www.researchgate.net/publication/350567399_2019_SAE_AERO_DESIGN_EAS_DESIGN_REPORT_UNIVERSIDAD_METROPOLITANA
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.