Influencia de los parámetros de corte del torneado en deformación superficial del acero AISI-1020 recocido

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20241248

Palabras clave:

AISI-1020, velocidad de avance, profundidad de corte, velocidad de corte, deformación plástica

Resumen

En este trabajo se presenta el estudio de la influencia de los parámetros de corte (profundidad de corte, velocidad de avance y velocidad de corte) del torneado con inserto de carburo sobre la deformación plástica inducida en el acero AISI-1020 recocido. Los resultados mostraron un aumento en la deformación con cada parámetro de corte debido al incremento tanto de las fuerzas asociadas al proceso de mecanizado como del área de corte, lo cual genera un aumento en la energía requerida para el corte del material, y, en consecuencia, mayor trabajo en frio sobre la superficie maquinada. El análisis ANOVA de los resultados mostró que la velocidad de avance tiene mayor influencia sobre la deformación resultante (86.03%) y la velocidad de corte tuvo una contribución menor (6,81%). Además, se propone una expresión matemática para la predicción de la deformación a partir de los parámetros evaluados.

|Resumen
= 32 veces | PDF (ENGLISH)
= 13 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Omar Zurita, Universidad Simon Bolivar

Profesor del Departamento de Mecánica

Verónica Di Graci, Universidad Simon Bolivar

Profesora del Departamento de Mecánica

Maria Capace, Universidad Simon Bolivar

Profesora del Departamento de Mecánica

Citas

J. P. Davim, Surface Integrity in Machining, 1st ed., London, England: Springer-Verlag, 2010.

M. Jacobson, P. Dahlman and F. Gunnberg, "Cutting Speed Influence on Surface Integrity of Hard Turned Bainite Steel", J. Mater. Process. Technol., vol.128, pp. 318-323, 2002.

S. Caruso, D. Umbrello, J.C. Outeiro, L. Filice and F. Micari, "An Experimental Investigation of Residual Stresses in Hard Machining of AISI 52100 Steel", Procedia Eng., vol.19, pp. 67-72, 2011.

V. García, O. Gonzalo and I. Bengoetxea, "Effect of Cutting Parameters in the Surface Residual Stresses Generated by Turning in AISI 4340 Steel", Int. J. Mach. Tools Manuf., vol.61, pp. 48-57, 2012.

M. Fitzpatrick, A. Thomas, P. Holdway, F. Kandil, J. Shackleton and L Suominen, Determination of Residual Stresses by X-Ray Diffraction, NPL, Teddington, UK, 2005.

P. Withers and H. Bhadeshia, “Residual stress. Part 1 – Measurement techniques”, Mater. Sci. Technol., vol. 17, no.4, pp. 355-365, 2013.

Z. Kang, J. Li and Z. Wang, “Stress Correction for Removal of Material in X-Ray Stress Determination”, J. Test. Eval., vol. 22, pp. 217-221, 1994.

D. Stewart, K. Stevens and A. Kaiser, “Magnetic Barkhausen Noise Analysis of Stress in Steel”, Curr. Appl. Phys., vol. 4, no. 2–4, pp. 308-311, 2004.

V. Herrera, C. Cruz, J. Sierra, D. Gutierrez and G. Carro, "Use of X Ray Diffraction and Magnetoelastic Effect for Assessment of Microstructural Parameters and Residual Stresses in Plastically Deformed Steel Bars", Proceedings of the XIII Workshop on Nuclear Physics and VII International Symposium on Nuclear and Related Techniques, Cuba, 2011.

P. Limon, E. Aguilera, H. Plascencia, E. Ledesma, A. Balvantín and J. de la Peña, “Analysis of Residual Stresses in the Roll Hemming Process Using the Barkhausen Magnetic Noise”, Acta Univ., vol. 28, no.1, 2018.

D. Buttle, V. Moorthy and B. Shaw, Determination of Residual Stresses by Magnetic Methods, NPL, Teddington, UK, 2006.

O. Zurita, V. Di Graci and M. Capace, “Surface Hardness Prediction Based on Cutting Parameters in Turning of Annealed AISI 1020 Steel” DYNA, vol. 84, no. 203, pp. 31-36, 2017.

V. Di Graci, O. Zurita and M. Capace, “Model for Microhardness Profile Prediction of Annealed AISI 1045 Steel Cylindrical Bars Subjected to Torsion”, Rev. de la Fac. de Ing., Universidad de Antioquia, vol. 89, pp. 68-72, 2018.

G. Dieter, Mechanical Metallurgy, 3rd ed., EE.UU., Mc. Graw – Hill, 2000.

J. Datsko, Material Properties and Manufacturing Processes, New York, EE.UU., John Wiley & Sons, 1991.

G. González, V. Di Graci, O. Zurita and M. Capace, “Axial Stress Prediction of Torsioned Solid and Hollow Cylindrical Bars”, Rev. Tec. Ing. Univ. Zulia, vol. 41, no. 2, pp. 71 – 78, 2018.

S.G. Hussein, “An Experimental Study of the Effects of Coolant Fluid on Surface Roughness in Turning Operation for Brass Alloy”, J. Eng., vol. 20, no. 3, pp. 96- 104, 2014.

D. Deepak and B. Rajendra, “Investigations on the Surface Roughness Produced in Turning of AL6061 (as-cast) by Taguchi Method”, Int. J. Res. Eng. Technol., vol. 4, no. 8, pp. 295-298, 2015.

ISO 1832, "Indexable Inserts for Cutting Tools -- Designation", 2017. [Online]. Available: https://www.iso.org/standard/69202.html. Accessed on: May 2022.

C. Che-Haron and A. Jawaid, “The Effect of Machining on Surface Integrity of Titanium Alloy Ti–6% Al–4% V”, J. Mater. Process. Technol., vol. 166, pp. 188-192, 2005.

A. Sharman, J. Hughes and K. Ridgway, “An Analysis of the Residual Stresses Generated in Inconel 718TM When Turning,” J. Mater. Process. Technol., vol. 173, no. 3, pp.359-367, 2006.

D. Montgomery, Design and Analysis of Experiments, 8th ed.. New York, USA: Wiley, 2012.

H. Sasahara, “The Effect on Fatigue Life of Residual Stress and Surface Hardness Resulting from Different Cutting Conditions of 0.45%C Steel”, Int. J. Mach. Tools Manuf., vol. 45, pp. 131–136, 2005.

A. Suhail, N. Ismail, S. Wong and N. Abdul, “Optimization of Cutting Parameters Based on Surface Roughness and Assistance of Workpiece Surface Temperature in Turning Process”, Am. J. Eng. Appl. Sci., vol. 3, no. 1, pp. 102-108, 2010.

ASTM A938-07, “Standard Test Method for Torsion Testing of Wire”, ASTM International, West Conshohocken, PA, 2007.

D. Montgomery, E. Peck and G. Vining, Introduction to Linear Regression Analysis, USA: Wiley, 2012.

C. Che-Haron and A. Jawaid, “The Effect of Machining on Surface Integrity of Titanium Alloy Ti–6% Al–4% V”, J. Mater. Process. Technol., vol. 166, no. 2, pp. 188–192, 2005.

G. Senussi, “Interaction Effect of Feed Rate and Cutting Speed in CNC - Turning on Chip Micro - Hardness of 304 - Austenitic Stainless Steel”, World Acad. Sci. Eng. Technol., vol. 28, pp. 121-126, 2007.

P. Patil, R. Kadi, S. Dundur and A. Pol, “Effect of Cutting Parameters on Surface Quality of AISI 316 Austenitic Stainless Steel in CNC Turning”, Int. Res. J. Eng. Tech., vol. 02, no. 04, pp. 1453-1460, 2015.

R. Pawade, S. Joshi and P. Brahmankar, “Effect of Machining Parameters and Cutting Edge Geometry on Surface Integrity of High-speed Turned Inconel 718”, Int. J. Mach. Tools Manuf., vol. 48, no. 1, pp. 15–28, 2008.

G. Boothroyd and W. Knight, Fundamentals of Metal Machining and Machine Tools, Marcel Dekker, Inc., New York, USA, 1989.

Z. Cassier, T. Guevara and A. Acosta, “Influencia de las Propiedades Mecánicas del Material Sobre las Fuerzas de Corte en el Mecanizado de Metales”, Anal. Ing. Mec. REIM, vol. 3, no. 1, pp. 103-108, 1985.

P. Ross, Taguchi Techniques for Quality Engineering, 2nd ed., McGraw-Hill, New York, USA, 1996.

Descargas

Publicado

2024-12-04

Cómo citar

Zurita, O., Di Graci, V., & Capace, M. (2024). Influencia de los parámetros de corte del torneado en deformación superficial del acero AISI-1020 recocido. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20241248

Número

Sección

Artículo de investigación