Influence of turning cutting parameters on surface deformation of annealed AISI-1020 steel
DOI:
https://doi.org/10.17533/udea.redin.20241248Keywords:
AISI-1020, feed rate, depth of cut, cutting speed, plastic deformationAbstract
This paper presents a study on the influence of the cutting parameters (depth of cut, feed rate, and cutting speed) of turning with a carbide insert on the plastic deformation induced in annealed AISI-1020 steel. The results showed an increase in the deformation with each cutting parameter, due to the higher forces associated with the machining process and the cutting area. This causes an increase in the energy required for material cutting and, consequently, more cold work on the machined surface. The ANOVA analysis of the results showed that the feed rate had the most significant role in the resulting deformation (86.03%), and the cutting speed contributed less (6.81%). In addition, a mathematical expression for the prediction of deformation based on the evaluated parameters is proposed.
Downloads
References
J. P. Davim, Surface Integrity in Machining, 1st ed. London, England: Springer-Verlag, 2010.
M. Jacobson, P. Dahlman, and F. Gunnberg, “Cutting speed influence on surface integrity of hard turned bainite steel,” Journal of Materials Processing Technology, vol. 128, 2002. [Online]. Available: https://doi.org/10.1016/S0924-0136(02)00472-7
S. Caruso, D. Umbrello, J. C. Outeiro, L. Filice, and F. Micari, “An experimental investigation of residual stresses in hard machining of AISI 52100 steel,” Procedia Engineering, vol. 19, Nov. 26, 2011. [Online]. Available: https://doi.org/10.1016/j.proeng.2011.11.081
V. García, O. Gonzalo, and I. Bengoetxea, “Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel,” International Journal of Machine Tools and Manufacture, vol. 61, Oct. 2012. [Online]. Available: https://doi.org/10.1016/j.ijmachtools.2012.05.008
M. Fitzpatrick, A. Thomas, P. Holdway, F. Kandil, J. Shackleton, and L. Suominen, Determination of Residual Stresses by X-Ray Diffraction. Teddington, UK: NPL, 2005. [Online]. Available: https://eprintspublications.npl.co.uk/2391/
P. Withers and H. Bhadeshia, “Residual stress. Part 1 – Measurement techniques,” Materials Science and Technology, vol. 17, no. 4, Jul. 2001. [Online]. Available: https://doi.org/10.1179/026708301101509980
Z. Kang, J. Li, and Z. Wang, “Stress correction for removal of material in X-ray stress determination,” Journal of Testing and Evaluation, vol. 22, May 1994. [Online]. Available: https://doi.org/10.1520/JTE11814J
D. Stewart, K. Stevens, and A. Kaiser, “Magnetic Barkhausen noise analysis of stress in steel,” Current Applied Physics, vol. 4, no. 2–4, Apr. 2004. [Online]. Available: https://doi.org/10.1016/j.cap.2003.11.035
Use of X-Ray Diffraction and Magnetoelastic Effect for Assessment of Microstructural Parameters and Residual Stresses in Plastically Deformed Steel Bars, Cuba, 2011. [Online]. Available: https://www.osti.gov/etdeweb/biblio/21451497
P. Limon, E. Aguilera, H. Plascencia, E. Ledesma, A. Balvantín, and J. de la Peña, “Analysis of residual stresses in the roll hemming process using the Barkhausen magnetic noise,” Acta Universitaria, vol. 28, no. 1, 2018. [Online]. Available: https://doi.org/10.15174/au.2018.1627
D. Buttle, V. Moorthy, and B. Shaw, Determination of Residual Stresses by Magnetic Methods. Teddington, UK: NPL, 2006. [Online]. Available: https://eprintspublications.npl.co.uk/3419/
O. Zurita, V. D. Graci, and M. Capace, “Surface hardness prediction based on cutting parameters in turning of annealed AISI 1020 steel,” DYNA, vol. 84, no. 203, Oct. 2017. [Online]. Available: https://doi.org/10.15446/dyna.v84n203.65481
V. D. Graci, O. Zurita, and M. Capace, “Model for microhardness profile prediction of annealed AISI 1045 steel cylindrical bars subjected to torsion,” Revista Facultad de Ingeniería, Universidad de Antioquia, vol. 89, Oct. 10, 2018. [Online]. Available: https://doi.org/10.17533/udea.redin.n89a09
G. E. Dieter, Mechanical Metallurgy, 3rd ed. USA: McGraw-Hill, 1986.
J. Datsko, Material Properties and Manufacturing Processes. New York, USA: John Wiley & Sons, 1966.
G. González, V. D. Graci, O. Zurita, and M. Capace, “Axial stress prediction of torsioned solid and hollow cylindrical bars,” Revista Técnica de Ingeniería de la Universidad del Zulia, vol. 41, no. 2, 2018. [Online]. Available: https://www.redalyc.org/journal/6057/605765712002/605765712002.pdf
S. G. Hussein, “An experimental study of the effects of coolant fluid on surface roughness in turning operation for brass alloy,” Journal of Engineering, vol. 20, no. 3, Mar. 1, 2014. [Online]. Available: https://doi.org/10.31026/j.eng.2014.03.09
D. Deepak and B. Rajendra, “Investigations on the surface roughness produced in turning of AL6061 (as-cast) by Taguchi method,” International Journal of Research in Engineering and Technology, vol. 4, no. 8, Aug. 2015. [Online]. Available: https://www.academia.edu/download/42200046/INVESTIGATIONS_ON_THE_SURFACE_ROUGHNESS_PRODUCED_IN_TURNING_OF_AL6061_AS-CAST_BY_TAGUCHI_METHOD.pdf
ISO, Indexable Inserts for Cutting Tools – Designation, Std., 2017, accessed on: May 2022. [Online]. Available: https://www.iso.org/standard/69202.html
C. Che-Haron and A. Jawaid, “The effect of machining on surface integrity of titanium alloy Ti–6,” Journal of Materials Processing Technology, vol. 166, no. 2, Aug. 2005. [Online]. Available: https://doi.org/10.1016/j.jmatprotec.2004.08.012
A. Sharman, J. Hughes, and K. Ridgway, “An analysis of the residual stresses generated in Inconel 718TM when turning,” Journal of Materials Processing Technology, vol. 173, no. 3, Apr. 20, 2006. [Online]. Available: https://doi.org/10.1016/j.jmatprotec.2005.12.007
D. Montgomery, Design and Analysis of Experiments, 8th ed. New York, USA: Wiley, 2012.
H. Sasahara, “The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel,” International Journal of Machine Tools and Manufacture, vol. 45, no. 2, Feb. 2005. [Online]. Available: https://doi.org/10.1016/j.ijmachtools.2004.08.002
A. Suhail, N. Ismail, S. Wong, and N. Abdul, “Optimization of cutting parameters based on surface roughness and assistance of workpiece surface temperature in turning process,” American Journal of Engineering and Applied Sciences, vol. 3, no. 1, 2010. [Online]. Available: https://tinyurl.com/4smcnpu4
ASTM, Standard Test Method for Torsion Testing of Wire, Std., 2007.
D. Montgomery, E. Peck, and G. Vining, Introduction to Linear Regression Analysis. USA: Wiley, 2012.
G. Senussi, “Interaction effect of feed rate and cutting speed in CNC-turning on chip micro-hardness of 304-austenitic stainless steel,” World Academy of Science, Engineering and Technology, vol. 1, no. 4, 2007. [Online]. Available: https://www.academia.edu/download/109618783/pdf.pdf
P. Patil, R. Kadi, S. Dundur, and A. Pol, “Effect of cutting parameters on surface quality of AISI 316 austenitic stainless steel in CNC turning,” International Research Journal of Engineering and Technology (IRJET), vol. 2, no. 4, Jul. 2015. [Online]. Available: https://tinyurl.com/5x9wycvz
R. Pawade, S. Joshi, and P. Brahmankar, “Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718,” International Journal of Machine Tools and Manufacture, vol. 48, no. 1, Jan. 2008. [Online]. Available: https://doi.org/10.1016/j.ijmachtools.2007.08.004
G. Boothroyd and W. Knight, Fundamentals of Metal Machining and Machine Tools. New York, USA: Marcel Dekker, Inc., 1989.
Z. Cassier, T. Guevara, and A. Acosta, “Influencia de las propiedades mecánicas del material sobre las fuerzas de corte en el mecanizado de metales,” Anales de Ingeniería Mecánica – REIM, vol. 3, no. 1, Dec. 1985. [Online]. Available: http://www.asoc-aeim.es/Indices_anales/Anales%20a%C3%B1o%203%20vol%201%20(Madrid)%201985%20(IV%20CNIM)_indice.pdf
P. Ross, Taguchi Techniques for Quality Engineering, 2nd ed. New York, USA: McGraw-Hill, 1996.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.
Twitter