Influence of turning cutting parameters on surface deformation of annealed AISI-1020 steel

Authors

DOI:

https://doi.org/10.17533/udea.redin.20241248

Keywords:

AISI-1020, feed rate, depth of cut, cutting speed, plastic deformation

Abstract

This paper presents a study on the influence of the cutting parameters (depth of cut, feed rate, and cutting speed) of turning with a carbide insert on the plastic deformation induced in annealed AISI-1020 steel. The results showed an increase in the deformation with each cutting parameter, due to the higher forces associated with the machining process and the cutting area. This causes an increase in the energy required for material cutting and, consequently, more cold work on the machined surface. The ANOVA analysis of the results showed that the feed rate had the most significant role in the resulting deformation (86.03%), and the cutting speed contributed less (6.81%). In addition, a mathematical expression for the prediction of deformation based on the evaluated parameters is proposed.

|Abstract
= 32 veces | PDF
= 13 veces|

Downloads

Download data is not yet available.

Author Biographies

Omar Zurita, Universidad Simon Bolivar

Mechanical Department Professor

Verónica Di Graci, Universidad Simon Bolivar

Mechanical Department Professor

Maria Capace, Universidad Simon Bolivar

Mechanical Department Professor

References

J. P. Davim, Surface Integrity in Machining, 1st ed., London, England: Springer-Verlag, 2010.

M. Jacobson, P. Dahlman and F. Gunnberg, "Cutting Speed Influence on Surface Integrity of Hard Turned Bainite Steel", J. Mater. Process. Technol., vol.128, pp. 318-323, 2002.

S. Caruso, D. Umbrello, J.C. Outeiro, L. Filice and F. Micari, "An Experimental Investigation of Residual Stresses in Hard Machining of AISI 52100 Steel", Procedia Eng., vol.19, pp. 67-72, 2011.

V. García, O. Gonzalo and I. Bengoetxea, "Effect of Cutting Parameters in the Surface Residual Stresses Generated by Turning in AISI 4340 Steel", Int. J. Mach. Tools Manuf., vol.61, pp. 48-57, 2012.

M. Fitzpatrick, A. Thomas, P. Holdway, F. Kandil, J. Shackleton and L Suominen, Determination of Residual Stresses by X-Ray Diffraction, NPL, Teddington, UK, 2005.

P. Withers and H. Bhadeshia, “Residual stress. Part 1 – Measurement techniques”, Mater. Sci. Technol., vol. 17, no.4, pp. 355-365, 2013.

Z. Kang, J. Li and Z. Wang, “Stress Correction for Removal of Material in X-Ray Stress Determination”, J. Test. Eval., vol. 22, pp. 217-221, 1994.

D. Stewart, K. Stevens and A. Kaiser, “Magnetic Barkhausen Noise Analysis of Stress in Steel”, Curr. Appl. Phys., vol. 4, no. 2–4, pp. 308-311, 2004.

V. Herrera, C. Cruz, J. Sierra, D. Gutierrez and G. Carro, "Use of X Ray Diffraction and Magnetoelastic Effect for Assessment of Microstructural Parameters and Residual Stresses in Plastically Deformed Steel Bars", Proceedings of the XIII Workshop on Nuclear Physics and VII International Symposium on Nuclear and Related Techniques, Cuba, 2011.

P. Limon, E. Aguilera, H. Plascencia, E. Ledesma, A. Balvantín and J. de la Peña, “Analysis of Residual Stresses in the Roll Hemming Process Using the Barkhausen Magnetic Noise”, Acta Univ., vol. 28, no.1, 2018.

D. Buttle, V. Moorthy and B. Shaw, Determination of Residual Stresses by Magnetic Methods, NPL, Teddington, UK, 2006.

O. Zurita, V. Di Graci and M. Capace, “Surface Hardness Prediction Based on Cutting Parameters in Turning of Annealed AISI 1020 Steel” DYNA, vol. 84, no. 203, pp. 31-36, 2017.

V. Di Graci, O. Zurita and M. Capace, “Model for Microhardness Profile Prediction of Annealed AISI 1045 Steel Cylindrical Bars Subjected to Torsion”, Rev. de la Fac. de Ing., Universidad de Antioquia, vol. 89, pp. 68-72, 2018.

G. Dieter, Mechanical Metallurgy, 3rd ed., EE.UU., Mc. Graw – Hill, 2000.

J. Datsko, Material Properties and Manufacturing Processes, New York, EE.UU., John Wiley & Sons, 1991.

G. González, V. Di Graci, O. Zurita and M. Capace, “Axial Stress Prediction of Torsioned Solid and Hollow Cylindrical Bars”, Rev. Tec. Ing. Univ. Zulia, vol. 41, no. 2, pp. 71 – 78, 2018.

S.G. Hussein, “An Experimental Study of the Effects of Coolant Fluid on Surface Roughness in Turning Operation for Brass Alloy”, J. Eng., vol. 20, no. 3, pp. 96- 104, 2014.

D. Deepak and B. Rajendra, “Investigations on the Surface Roughness Produced in Turning of AL6061 (as-cast) by Taguchi Method”, Int. J. Res. Eng. Technol., vol. 4, no. 8, pp. 295-298, 2015.

ISO 1832, "Indexable Inserts for Cutting Tools -- Designation", 2017. [Online]. Available: https://www.iso.org/standard/69202.html. Accessed on: May 2022.

C. Che-Haron and A. Jawaid, “The Effect of Machining on Surface Integrity of Titanium Alloy Ti–6% Al–4% V”, J. Mater. Process. Technol., vol. 166, pp. 188-192, 2005.

A. Sharman, J. Hughes and K. Ridgway, “An Analysis of the Residual Stresses Generated in Inconel 718TM When Turning,” J. Mater. Process. Technol., vol. 173, no. 3, pp.359-367, 2006.

D. Montgomery, Design and Analysis of Experiments, 8th ed.. New York, USA: Wiley, 2012.

H. Sasahara, “The Effect on Fatigue Life of Residual Stress and Surface Hardness Resulting from Different Cutting Conditions of 0.45%C Steel”, Int. J. Mach. Tools Manuf., vol. 45, pp. 131–136, 2005.

A. Suhail, N. Ismail, S. Wong and N. Abdul, “Optimization of Cutting Parameters Based on Surface Roughness and Assistance of Workpiece Surface Temperature in Turning Process”, Am. J. Eng. Appl. Sci., vol. 3, no. 1, pp. 102-108, 2010.

ASTM A938-07, “Standard Test Method for Torsion Testing of Wire”, ASTM International, West Conshohocken, PA, 2007.

D. Montgomery, E. Peck and G. Vining, Introduction to Linear Regression Analysis, USA: Wiley, 2012.

C. Che-Haron and A. Jawaid, “The Effect of Machining on Surface Integrity of Titanium Alloy Ti–6% Al–4% V”, J. Mater. Process. Technol., vol. 166, no. 2, pp. 188–192, 2005.

G. Senussi, “Interaction Effect of Feed Rate and Cutting Speed in CNC - Turning on Chip Micro - Hardness of 304 - Austenitic Stainless Steel”, World Acad. Sci. Eng. Technol., vol. 28, pp. 121-126, 2007.

P. Patil, R. Kadi, S. Dundur and A. Pol, “Effect of Cutting Parameters on Surface Quality of AISI 316 Austenitic Stainless Steel in CNC Turning”, Int. Res. J. Eng. Tech., vol. 02, no. 04, pp. 1453-1460, 2015.

R. Pawade, S. Joshi and P. Brahmankar, “Effect of Machining Parameters and Cutting Edge Geometry on Surface Integrity of High-speed Turned Inconel 718”, Int. J. Mach. Tools Manuf., vol. 48, no. 1, pp. 15–28, 2008.

G. Boothroyd and W. Knight, Fundamentals of Metal Machining and Machine Tools, Marcel Dekker, Inc., New York, USA, 1989.

Z. Cassier, T. Guevara and A. Acosta, “Influencia de las Propiedades Mecánicas del Material Sobre las Fuerzas de Corte en el Mecanizado de Metales”, Anal. Ing. Mec. REIM, vol. 3, no. 1, pp. 103-108, 1985.

P. Ross, Taguchi Techniques for Quality Engineering, 2nd ed., McGraw-Hill, New York, USA, 1996.

Downloads

Published

2024-12-04

How to Cite

Zurita, O., Di Graci, V., & Capace, M. (2024). Influence of turning cutting parameters on surface deformation of annealed AISI-1020 steel. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20241248

Issue

Section

Research paper