Evaluación del rendimiento e impacto de la penetración de los vehículos eléctricos en redes de distribución activas
DOI:
https://doi.org/10.17533/udea.redin.20240724Palabras clave:
electric vehicle, line loading, EV charging methods, load modeling, load flow calculationResumen
Debido al calentamiento global se han creado estrategias para combatir este problema. Algunas estrategias son: integración de energías renovables, soluciones robóticas agrícolas y la penetración de vehículos eléctricos. La última estrategia, los vehículos eléctricos (VE), genera un cambio de paradigma en el sector del transporte tradicionalmente impulsado por motores de combustión interna. La penetración de VE puede lograr una operación eficiente de las redes eléctricas, sin embargo, la penetración de estas tecnologías en las redes de distribución activas plantea numerosos retos. Es necesario analizar el aumento del consumo de la electricidad, la degradación de las tensiones o la evaluación de la capacidad de integración de VE. En este trabajo se analiza la influencia de la penetración de VE en un sistema de distribución activo de 34-barras a través de cinco estaciones de carga VE y se proponen dos alternativas para mejorar la incorporación de los VE. Específicamente, se analizan los niveles de tensión en los nodos del sistema y se propone una gestión inteligente de los recursos a través de condensadores y derivaciones de transformadores. A partir de los resultados, se evidencia caídas de tensión en algunas barras y un aumento o disminución de la carga en las líneas en función de la penetración del VE. También es evidente que el 9% de los nodos no funcionaban en rangos de tensión aceptables en el peor de los casos.
Descargas
Citas
J. A. Sanguesa, V. Torres-Sanz, P. Garrido, F. J. Martinez, and J. M. Marquez-Barja, “A review on electric vehicles: Technologies and challenges,” Smart Cities, vol. 4, no. 1, pp. 372–404, 2021. [Online]. Available: https://www.mdpi.com/2624-6511/4/1/22
E. Commission, D.-G. for Mobility, and Transport, EU transport in figures : statistical pocketbook 2019. Publications Office, 2019.
S. B. Gruetzmacher, C. Bento Vaz, and . Ferreira, “Sustainability performance assessment of the transport sector in european countries,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 104, p. 42–52, Jul. 2021. [Online]. Available: https://revistas.udea.edu.co/index.php/ingenieria/article/view/344966
M. Carlier, “Worldwide number of battery electric vehicles in use from 2016 to 2021,” 07 2022, accessed July 27, 2022.
F. Omonov, Q. Dehqonov et al., “Electric cars as the cars of the future,” Eurasian Journal of Engineering and
Technology, vol. 4, pp. 128–133, 2022.
J. Gomez and M. Morcos, “Impact of ev battery chargers on the power quality of distribution systems,” IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 975–981, 2003.
S. Deb, K. Tammi, K. Kalita, and P. Mahanta, “Impact of electric vehicle charging station load on distribution network,” Energies, vol. 11, no. 1, 2018. [Online]. Available: https://www.mdpi.com/1996-1073/11/1/178
J. Stiasny, T. Zufferey, G. Pareschi, D. Toffanin, G. Hug, and K. Boulouchos, “Sensitivity analysis of electric vehicle
impact on low-voltage distribution grids,” Electric Power Systems Research, vol. 191, p. 106696, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0378779620304995
M. Kühnbach, J. Stute, T. Gnann, M. Wietschel, S. Marwitz, and M. Klobasa, “Impact of electric vehicles:
Will german households pay less for electricity?” Energy Strategy Reviews, vol. 32, p. 100568, 2020. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S2211467X20301218
S. Rahman, I. A. Khan, A. A. Khan, A. Mallik, and M. F. Nadeem, “Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system,” Renewable and Sustainable Energy Reviews, vol. 153, p. 111756, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032121010273
C. D. Zuluaga-Ríos, D. F. Florián-Ceballos, M. Ángel Rojo-Yepes, and S. D. Saldarriaga-Zuluaga, “Review of charging load modeling strategies for electric vehicles: a comparison of grid-to-vehicle probabilistic approaches,” Tecnura, vol. 25, no. 70, p. 108–125, oct. 2021. [Online]. Available: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18657
J. Gil-Aguirre, S. Perez-Londoño, and J. Mora-Flórez, “A measurement-based load modelling methodology for electric vehicle fast-charging stations,” Electric Power Systems Research, vol. 176, p. 105934, 2019.
X. Li, Q. Zhang, Z. Peng, A. Wang, and W. Wang, “A data-driven two-level clustering model for driving pattern analysis of electric vehicles and a case study,” Journal of Cleaner Production, vol. 206, pp. 827–837, 2019.
O. Frendo, J. Graf, N. Gaertner, and H. Stuckenschmidt, “Data-driven smart charging for heterogeneous electric vehicle fleets,” Energy and AI, vol. 1, p. 100007, 2020.
A. Gerossier, R. Girard, and G. Kariniotakis, “Modeling and forecasting electric vehicle consumption profiles,” Energies, vol. 12, no. 7, 2019.
K. Sun, M. R. Sarker, and M. A. Ortega-Vazquez, “Statistical characterization of electric vehicle charging in different locations of the grid,” in 2015 IEEE Power Energy Society General Meeting, 2015, pp. 1–5.
G. Li and X. Zhang, “Modeling of plug-in hybrid electric vehicle charging demand in probabilistic power flow calculations,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 492–499, 2012.
Y. B. Khoo, C.-H. Wang, P. Paevere, and A. Higgins, “Statistical modeling of electric vehicle electricity consumption in the victorian EV trial, australia,” Transportation Research Part D: Transport and Environment, vol. 32, pp. 263–277, 2014.
H. Jiang, H. Ren, C. Sun, and D. Watts, “The temporal-spatial stochastic model of plug-in hybrid electric vehicles,” in 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2017, pp. 1–6.
A. Ahmadian, M. Sedghi, A. Elkamel, M. Aliakbar-Golkar, and M. Fowler, “Optimal WDG planning in active distribution networks based on possibilistic-probabilistic PEVs load modelling,” IET Generation, Transmission and Distribution, vol. 11, pp. 865–875, March 2017.
H. Tian, D. Tzelepis, and P. N. Papadopoulos, “Electric vehicle charger static and dynamic modelling for power system studies,” Energies, vol. 14, no. 7, 2021. [Online]. Available: https://www.mdpi.com/1996-1073/14/7/1801
S. M. Arif, T. T. Lie, B. C. Seet, S. Ayyadi, and K. Jensen, “Review of electric vehicle technologies, charging methods, standards and optimization techniques,” Electronics, vol. 10, no. 16, 2021. [Online]. Available: https://www.mdpi.com/2079-9292/10/16/1910
Vatsala, A. Ahmad, M. S. Alam, and R. C. Chaban, “Efficiency enhancement of wireless charging for electric vehicles through reduction of coil misalignment,” in 2017 IEEE Transportation Electrification Conference and Expo (ITEC), 2017, pp. 21–26.
M. R. Sarker, H. Pandžić, and M. A. Ortega-Vazquez, “Electric vehicle battery swapping station: Business case and optimization model,” in 2013 International Conference on Connected Vehicles and Expo (ICCVE), 2013, pp. 289–294.
S. LaMonaca and L. Ryan, “The state of play in electric vehicle charging services–a review of infrastructure provision, players, and policies,” Renewable and sustainable energy reviews, vol. 154, p. 111733, 2022.
H. S. Das, M. M. Rahman, S. Li, and C. Tan, “Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review,” Renewable and Sustainable Energy Reviews, vol. 120, p. 109618, 2020.
S. Ray, K. Kasturi, S. Patnaik, and M. R. Nayak, “Review of electric vehicles integration impacts in distribution networks: Placement, charging/discharging strategies, objectives and optimisation models,” Journal of Energy Storage, vol. 72, p. 108672, 2023.
H. Tian, D. Tzelepis, and P. N. Papadopoulos, “Electric vehicle charger static and dynamic modelling for power system studies,” Energies, vol. 14, no. 7, p. 1801, 2021.
C. Dharmakeerthi, N. Mithulananthan, and T. Saha, “Impact of electric vehicle fast charging on power system voltage stability,” International Journal of Electrical Power & Energy Systems, vol. 57, pp. 241–249, 2014.
R. Collin, Y. Miao, A. Yokochi, P. Enjeti, and A. Jouanne, “Advanced electric vehicle fast-charging technologies,” Energies, vol. 12, p. 1839, 05 2019.
M. Brenna, F. Foiadelli, C. Leone, and M. Longo, “Electric vehicles charging technology review and optimal size estimation,” Journal of Electrical Engineering & Technology, vol. 15, no. 6, pp. 2539–2552, 2020.
C. Dericioglu, E. Yirik, E. Unal, M. Cuma, B. Onur, and M. Tumay, “A review of charging technologies for commercial electric vehicles,” International Journal of Advances on Automotive and Technology, vol. 2, no. 1, pp. 61–70, 2018.
W. H. Kersting, “Radial distribution test feeders,” IEEE Transactions on Power Systems, vol. 6, no. 3, pp. 975–985, 1991.
A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, and D. Zhao, “Load modeling—a review,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 5986–5999, 2017.
D.-H. Jang and G.-H. Choe, “Step-up/down ac voltage regulator using transformer with tap changer and pwm ac chopper,” IEEE Transactions on Industrial Electronics, vol. 45, no. 6, pp. 905–911, 1998.
A. Ul-Haq, C. Cecati, K. Strunz, and E. Abbasi, “Impact of electric vehicle charging on voltage unbalance in an urban distribution network,” Intelligent Industrial Systems, vol. 1, no. 1, pp. 51–60, 2015.
P. Patil, K. Kazemzadeh, and P. Bansal, “Integration of charging behavior into infrastructure planning and management of electric vehicles: A systematic review and framework,” Sustainable Cities and Society, vol. 88, p. 104265, 2023.
I. Ullah, J. Zheng, A. Jamal, M. Zahid, M. Almoshageh, and M. Safdar, “Electric vehicles charging infrastructure planning: a review,” International Journal of Green Energy, pp. 1–19, 2023.
O. Sadeghian, A. Oshnoei, B. Mohammadi-Ivatloo, V. Vahidinasab, and A. Anvari-Moghaddam, “A comprehensive review on electric vehicles smart charging: Solutions, strategies, technologies, and challenges,” Journal of Energy Storage, vol. 54, p. 105241, 2022.
B. Singh and A. K. Sharma, “Benefit maximization and optimal scheduling of renewable energy sources integrated system considering the impact of energy storage device and plug-in electric vehicle load demand,” Journal of Energy Storage, vol. 54, p. 105245, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352152X22012440
M. Saeedirad, E. Rokrok, and M. Joorabian, “A smart discrete charging method for optimum electric vehicles integration in the distribution system in presence of demand response program,” Journal of Energy Storage, vol. 47, p. 103577, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352152X21012561
B. Li, M. C. Kisacikoglu, C. Liu, N. Singh, and M. Erol-Kantarci, “Big data analytics for electric vehicle integration in green smart cities,” IEEE Communications Magazine, vol. 55, no. 11, pp. 19–25, 2017.
X. Li, Y. Tan, X. Liu, Q. Liao, B. Sun, G. Cao, C. Li, X. Yang, and Z. Wang, “A cost-benefit analysis of v2g electric vehicles supporting peak shaving in shanghai,” Electric Power Systems Research, vol. 179, p. 106058, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378779619303773
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.