Métodos para evaluar la tasa de corrosión en aleaciones de magnesio: revisión
DOI:
https://doi.org/10.17533/udea.redin.20240102Palabras clave:
Magnesio, Pérdida de masa, Corrosión, Evolución de hidrógeno, Polarización potenciodinámicaResumen
La mayor desventaja del uso de algunas aleaciones de magnesio es su baja resistencia a la corrosión. Por lo tanto, la evaluación de su resistencia a la corrosión es un factor crítico para el desarrollo de nuevas aleaciones y tratamientos superficiales. Las técnicas empleadas para determinar la tasa de corrosión incluyen determinaciones de pérdida de masa, evolución de hidrógeno, polarización potenciodinámica (PP) y espectroscopía de impedancia electroquímica (EIS), pero aún existen dificultades para la estimación precisa de este parámetro en aleaciones de magnesio. En esta revisión, se analizan las aplicaciones, ventajas y desventajas de las técnicas mencionadas antes. Además, se comparan y analizan un gran número de datos de tasa de corrosión reportados para varias aleaciones de Mg en 3 electrolitos diferentes (NaCl, solución de Hanks y SBF), usando pérdida de masa, evolución de hidrógeno y PP. Generalmente, las tasas de corrosión obtenidas mediante pérdida de masa son mayores que las obtenidas por evolución de hidrógeno. Por otro lado, no es posible establecer correlaciones entre tasas de corrosión obtenidas mediante PP y aquellas obtenidas por pérdida de masa y evolución de hidrógeno. Mas aún, se reportan tasas de corrosión muy diferentes para la misma aleación, lo que implica que los procedimientos de medición no están bien estandarizados.
Descargas
Citas
C. Wang, Z. Cui, H. Liu, Y. Chen, W. Diang, and S. Xiao, “Electrical and thermal conductivity in mg–5sn alloy at different aging status,” Materials & Design, vol. 84, Nov. 05, 2015. [Online]. Available: https://doi.org/10.1016/j.matdes.2015.06.110
B. L. Mordike and T. Ebert, “Magnesium: Properties — applications — potential,” Materials Science and Engineering: A, vol. 302, no. 1, Apr. 15, 2001. [Online]. Available: https://doi.org/10.1016/S0921-5093(00)01351-4
M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review,” Biomaterials, vol. 27, no. 9, Oct. 24, 2005. [Online]. Available: https://doi.org/10.1016/j.biomaterials.2005.10.003
A. A. Luo, “8 - applications: aerospace, automotive and other structural applications of magnesium,” Fundamentals of Magnesium Alloy Metallurgy, Mar. 27, 2014. [Online]. Available: https://doi.org/10.1533/9780857097293.266
G. Cole, “18 - magnesium (mg) corrosion protection techniques in the automotive industry,” Corrosion Prevention of Magnesium Alloys, Mar. 27, 2014. [Online]. Available: https://doi.org/10.1533/9780857098962.4.489
R. M’Saoubi, D. Axinte, S. L. Soo, C. Nobel, H. Attia, G. Kappmeyer, S. Engin, and et al., “High performance cutting of advanced aerospace alloys and composite materials,” CIRP Annals, vol. 64, no. 2, Jul. 15, 2015. [Online]. Available: https://doi.org/10.1016/j.cirp.2015.05.002
H. Liu, F. Cao, G.-L. Song, D. Zheng, Z. Shi, M. S. Dargusch, and A. Atrens, “Review of the atmospheric corrosion of magnesium alloys,” Journal of Materials Science & Technology, vol. 35, no. 9, May. 09, 2019. [Online]. Available: https://doi.org/10.1016/j.jmst.2019.05.001
G. L. Song and A. Atrens, “Corrosion mechanisms of magnesium alloys,” Advanced Engineering Materials, vol. 1, no. 1, Feb. 02, 2000. [Online]. Available: https://doi.org/10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
J. Liu, H. Hu, Y. Liu, D. Zhang, Z. Ou, and Y. Zhi, “Mechanical properties and wear-corrosion resistance of a new compound extrusion process for magnesium alloy az61,” Materials Testing, vol. 62, no. 4, 2020. [Online]. Available: https://doi.org/10.3139/120.111476
A. A. Zuleta, E. Correa, J. G. Castaño, F. Echeverría, A. Baron-Wiechec, P. Skeldon, and G. E. Thompson, “Study of the formation of alkaline electroless ni-p coating on magnesium and az31b magnesium alloy,” Surface and Coatings Technology, vol. 321, Apr. 25, 2017. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2017.04.059
X.-J. Cui, X.-Z. Lin, C.-H. Liu, R.-S. Yang, X.-W. Zheng, and M. Gong, “Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on az31 mg alloy,” Corrosion Science, vol. 90, Nov. 01, 2014. [Online]. Available: https://doi.org/10.1016/j.corsci.2014.10.041
R. F. Zhang, S. F. Zhang, and S. W. Duo, “Influence of phytic acid concentration on coating properties obtained by mao treatment on magnesium alloys,” Applied Surface Science, vol. 225, no. 18, May. 04, 2009. [Online]. Available: https://doi.org/10.1016/j.apsusc.2009.04.145
S. Mathieu, C. Rapin, J. Hazan, and P. Steinmetz, “Influence of phytic acid concentration on coating properties obtained by mao treatment on magnesium alloys,” Corrosion Science, vol. 44, no. 12, May. 14, 2002. [Online]. Available: https://doi.org/10.1016/S0010-938X(02)00075-6
M. Carboneras, L. A. Hernández-Alvarado, Y. E. Mireles, L. S. Hernández, M. García-Alonso, and M. Escudero, “Tratamientos químicos de conversión para la protección de magnesio biodegradable en aplicaciones temporales de reparación ósea,” Revista de Metalurgia, vol. 46, no. 1, Ene-Feb. 2010. [Online]. Available: https://doi.org/10.3989/revmetalm.0944
S. Hiromoto and A. Yamamoto, “Control of degradation rate of bioabsorbable magnesium by anodization and steam treatment,” Materials Science and Engineering: C, vol. 30, no. 8, Jun. 08 2010. [Online]. Available: https://doi.org/10.1016/j.msec.2010.06.001
Y. Wang, Z. Huang, Q. Yan, C. Liu, P. Liu, Y. Zhang, C. Guo, and et al., “Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated az31 magnesium alloy under the salt spray corrosion test,” Applied Surface Science, vol. 378, Apr. 06, 2016. [Online]. Available: https://doi.org/10.1016/j.apsusc.2016.04.011
G. Wang, S. Ge, Y. Shen, H. Wang, Q. Dong, Q. Zhang, J. Gao, and et al., “Study on the biodegradability and biocompatibility of we magnesium alloys,” Materials Science and Engineering: C, vol. 32, no. 8, Jun. 06, 2012. [Online]. Available: https://doi.org/10.1016/j.msec.2012.05.050
N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, C. Vogt, and et al., “Magnesium alloys as implant materials – principles of property design for mg–re alloys,” Acta Biomaterialia, vol. 6, no. 5, Sep. 27, 2009. [Online]. Available: https://doi.org/10.1016/j.actbio.2009.09.010
Y. K. Pan, C. Z. Chen, D. G. Wang, and Z. Q. Lin, “Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings,” Materials Chemistry and Physics, vol. 141, no. 2-3, Jul. 03, 2013. [Online]. Available: https://doi.org/10.1016/j.matchemphys.2013.06.013
Y. Jang, B. Collins, J. Sankar, and Y. Yun, “Effect of biologically relevant ions on the corrosion products formed on alloy az31b: An improved understanding of magnesium corrosion,” Materials Chemistry and Physics, vol. 9, no. 10, Mar. 25, 2013. [Online]. Available: https://doi.org/10.1016/j.actbio.2013.03.026
G. Song, “Control of biodegradation of biocompatable magnesium alloys,” Corrosion Science, vol. 49, no. 4, Feb. 06, 2007. [Online]. Available: https://doi.org/10.1016/j.corsci.2007.01.001
N. I. Z. Abidin, D. Martin, and A. Atrens, “Corrosion of high purity mg, az91, ze41 and mg2zn0.2mn in hank’s solution at room temperature,” Corrosion Science, vol. 53, no. 3, Oct. 23, 2010. [Online]. Available: https://doi.org/10.1016/j.corsci.2010.10.008
Standard Guide for Laboratory Immersion Corrosion Testing of Metal, ASTM G31-21, 2021. [Online]. Available: https://www.astm.org/g0031-21.html
S. Guan, J. Hu, L. Wang, S. Zhu, H. Wang, J. Wang, W. Li, and et al., “Mg alloys development and surface modification for biomedical application,” in Magnesium Alloys - Corrosion and Surface Treatments, F. Czerwinski, Ed. Rijeka, Croatia: InTech, 2011. [Online]. Available: https://doi.org/10.5772/13187
N. I. Z. Abidin, A. D. Forno, M. Bestetti, D. Martin, A. Beer, and A. Atrens, “Evaluation of coatings for mg alloys for biomedical applications,” Advanced Engineering Materials, vol. 17, no. 1, Apr. 25, 2014. [Online]. Available: https://doi.org/10.1002/adem.201300516
L.-J. Yang, Y.-H. Wei, L.-F. Hou, and D. Zhang, “Corrosion behaviour of die-cast az91d magnesium alloy in aqueous sulphate solutions,” Corrosion Science, vol. 17, no. 1, Sep. 26, 2009. [Online]. Available: https://doi.org/10.1016/j.corsci.2009.09.020
A. Atrens, G. L. Song, M. Liu, Z. Shi, F. Cao, and M. S. Dargusch, “Review of recent developments in the field of magnesium corrosion,” Advanced Engineering Materials, vol. 17, no. 4, Jan. 07, 2015. [Online]. Available: https://doi.org/10.1002/adem.201400434
C. Wang, L. Wu, F. Xue, R. Ma, I.-I. N. Etim, and et al., “Electrochemical noise analysis on the pit corrosion susceptibility of biodegradable az31 magnesium alloy in four types of simulated body solutions,” Journal of Materials Science & Technology, vol. 34, no. 10, Jan. 31, 2018. [Online]. Available: https://doi.org/10.1016/j.jmst.2018.01.015
Q. Tian, J. A. Mendeza, L. Rivera-Castaneda, O. Mahmood, A. Showalter, E. Ang, and et al., “Development of a novel loading device for studying magnesium degradation under compressive load for implant applications,” Materials Letters, vol. 217, Dec. 30, 2017. [Online]. Available: https://doi.org/10.1016/j.matlet.2017.12.147
X.-B. Chen, C. Li, and D. Xu, “Biodegradation of mg-14li alloy in simulated body fluid: A proof-of-concept study,” Bioactive Materials, vol. 3, no. 1, Sep. 02, 2017. [Online]. Available: https://doi.org/10.1016/j.bioactmat.2017.08.002
L. L. Shi, Y. Huang, L. Yang, F. Feyerabend, C. Mendis, and et. al., “Mechanical properties and corrosion behavior of mg–gd–ca–zr alloys for medical applications,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 47, Mar. 14, 2015. [Online]. Available: https://doi.org/10.1016/j.jmbbm.2015.03.003
W. Zhou, T. Shen, and N. N. Aung, “Effect of heat treatment on corrosion behaviour of magnesium alloy az91d in simulated body fluid,” Corrosion Science, vol. 52, no. 3, Nov. 27, 2009. [Online]. Available: https://doi.org/10.1016/j.corsci.2009.11.030
R.-C. Zeng, L. Sun, Y.-F. Zheng, H.-Z. Cui, and E.-H. Han, “Corrosion and characterisation of dual phase mg–li–ca alloy in hank’s solution: The influence of microstructural features,” Corrosion Science, vol. 79, Nov. 05, 2013. [Online]. Available: https://doi.org/10.1016/j.corsci.2013.10.028
Y. Wang, M. Wei, J. Gao, J. Hu, and Y. Zhang, “Corrosion process of pure magnesium in simulated body fluid,” Materials Letters, vol. 62, no. 14, Nov. 28, 2007. [Online]. Available: https://doi.org/10.1016/j.matlet.2007.11.045
F. Witte, J. Fischer, J. Nellesen, H.-A. Crostack, V. Kaese, and et. al., “In vitro and in vivo corrosion measurements of magnesium alloys,” Biomaterials, vol. 27, no. 7, Aug. 24, 2005. [Online]. Available: https://doi.org/10.1016/j.biomaterials.2005.07.037
S. Feliu and I. Llorente, “Corrosion product layers on magnesium alloys az31 and az61: Surface chemistry and protective ability,” Applied Surface Science, vol. 347, May. 04, 2015. [Online]. Available: https://doi.org/10.1016/j.apsusc.2015.04.189
Y. Dai, X.-H. Chen, T. Yan, A.-T. Tang, D. Zhao, and et. al., “Improved corrosion resistance in az61 magnesium alloys induced by impurity reduction,” Acta Metallurgica Sinica (English Letters), vol. 33, May. 14, 2019. [Online]. Available: https://doi.org/10.1007/s40195-019-00914-2
M. Liang, Y. M. C. Wu, J. Wang, M. Dong, B. Dong, and et. al., “Influences of aggressive ions in human plasma on the corrosion behavior of az80 magnesium alloy,” Materials Science and Engineering: C, vol. 119, Sep. 21, 2020. [Online]. Available: https://doi.org/10.1016/j.msec.2020.111521
R. Arrabal, B. Mingo, A. Pardo, E. Matykina, M. Mohedano, and et. al., “Role of alloyed nd in the microstructure and atmospheric corrosion of as-cast magnesium alloy az91,” Corrosion Science, vol. 97, Apr. 20, 2015. [Online]. Available: https://doi.org/10.1016/j.corsci.2015.04.004
N. I. Z. Abidin, A. D. Atrens, D. Martin, and A. Atrens, “Corrosion of high purity mg, mg2zn0.2mn, ze41 and az91 in hank’s solution at 37 °c,” Corrosion Science, vol. 53, no. 11, Jul. 03, 2011. [Online]. Available: https://doi.org/10.1016/j.corsci.2011.06.030
M.-C. Zhao, M. Liu, G. L. Song, and A. Atrens, “Influence of microstructure on corrosion of as-cast ze41,” Advanced Engineering Materials, vol. 10, no. 1-2, Feb. 12, 2008. [Online]. Available: https://doi.org/10.1002/adem.200700246
G.-L. Song and Z. Shi, “Corrosion mechanism and evaluation of anodized magnesium alloys,” Corrosion Science, vol. 85, Apr. 13, 2014. [Online]. Available: https://doi.org/10.1016/j.corsci.2014.04.008
O. Gaon, G. Dror, O. Davidi, and A. Lugovskoy, “The effect of the local microstructure of mri 201s magnesium alloy on its corrosion rate,” Corrosion Science, vol. 93, Jan. 13, 2015. [Online]. Available: https://doi.org/10.1016/j.corsci.2015.01.018
D. Wu, S. Yan, Z. Wang, Z. Zhang, R. Miao, and et al., “Effect of samarium on microstructure and corrosion resistance of aged as-cast az92 magnesium alloy,” Journal of Rare Earths, vol. 32, no. 7, Jul. 02, 2014. [Online]. Available: https://doi.org/10.1016/S1002-0721(14)60123-X
M. Bornapour, M. Celikin, M. Cerruti, and M. Pekguleryuz, “Magnesium implant alloy with low levels of strontium and calcium: The third element effect and phase selection improve bio-corrosion resistance and mechanical performance,” Materials Science and Engineering: C, vol. 35, Nov. 18, 2013. [Online]. Available: https://doi.org/10.1016/j.msec.2013.11.011
R.-C. Zeng, W.-C. Qi, H.-Z. Cui, F. Zhang, S.-Q. Li, and et al., “In vitro corrosion of as-extruded mg–ca alloys—the influence of ca concentration,” Corrosion Science, vol. 96, Apr. 09, 2015. [Online]. Available: https://doi.org/10.1016/j.corsci.2015.03.018
M. del R. Silva Campos, C. Blawert, C. L. Mendis, M. Mohedano, T. Zimmermann, and et al., “Effect of heat treatment on the corrosion behavior of mg-10gd alloy in 0.5no. 84, Apr. 15, 2020. [Online]. Available: https://doi.org/10.3389/fmats.2020.00084
B. Homayun and A. Afshar, “Microstructure, mechanical properties, corrosion behavior and cytotoxicity of mg–zn–al–ca alloys as biodegradable materials,” Journal of Alloys and Compounds, vol. 607, Apr. 18, 2014. [Online]. Available: https://doi.org/10.1016/j.jallcom.2014.04.059
Y. Du, X. Wang, D. Liu, W. Sun, and B. Jiang, “Corrosion behavior of a mg–zn–ca–la alloy in 3.5 wt% nacl solution,” Journal of Magnesium and Alloys, vol. 10, no. 2, Sep. 24, 2020. [Online]. Available: https://doi.org/10.1016/j.jma.2020.08.004
Y. Wang, Z. Liao, C. Song, and H. Zhang, “Influence of nd on microstructure and bio-corrosion rsistance of mg-zn-mn-ca alloy,” Rare Metal Materials and Engineering, vol. 42, no. 4, Jul. 26, 2013. [Online]. Available: https://doi.org/10.1016/S1875-5372(13)60052-1
L. Zhang, Y. Zhang, J. Zhang, R. Zhao, and J. Zhang, “Effect of alloyed mo on mechanical properties, biocorrosion and cytocompatibility of as-cast mg–zn–y–mn alloys,” Acta Metallurgica Sinica (English Letters), vol. 33, Jan. 07, 2020. [Online]. Available: https://doi.org/10.1007/s40195-019-00995-z
Y. Song, E. H. Han, D. Shan, C. D. Yim, and B. S. You, “The role of second phases in the corrosion behavior of mg–5zn alloy,” Corrosion Science, vol. 60, Mar. 31, 2012. [Online]. Available: https://doi.org/10.1016/j.corsci.2012.03.030
W. Jin, G. Wu, H. Feng, W. Wang, and X. Zhang, “Improvement of corrosion resistance and biocompatibility of rare-earth we43 magnesium alloy by neodymium self-ion implantation,” Corrosion Science, vol. 94, Feb. 04, 2015. [Online]. Available: https://doi.org/10.1016/j.corsci.2015.01.049
Y. Gui, Q. Li, and J. Chen, “International journal of electrochemical science,” Corrosion Science, vol. 14, no. 2, Jun. 26, 2023. [Online]. Available: https://doi.org/10.20964/2019.02.25
X. Zhan, S.-D. Cui, L. Zhou, J.-B. Lian, J. He, and et al., “Preparation and characterization of calcium phosphate containing coating on plasma electrolytic oxidized magnesium and its corrosion behavior in simulated body fluids,” Journal of Alloys and Compounds, vol. 896, Nov. 30, 2021. [Online]. Available: https://doi.org/10.1016/j.jallcom.2021.163042
Y. Ma, H. Xiong, and B. Chen, “Effect of heat treatment on microstructure and corrosion behavior of mg-5al-1zn-1sn magnesium alloy,” Corrosion Science, vol. 191, Aug. 12, 2021. [Online]. Available: https://doi.org/10.1016/j.corsci.2021.109759
J. Li, J. Li, Q. Li, H. Zhou, G. Wang, and et al., “Titania-zinc phosphate/nanocrystalline zinc composite coatings for corrosion protection of biomedical we43 magnesium alloy,” Surface and Coatings Technology, vol. 410, Feb. 04, 2021. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2021.126940
Z. Shi and A. Atrens, “An innovative specimen configuration for the study of mg corrosion,” Corrosion Science, vol. 53, no. 1, Sep. 16, 2010. [Online]. Available: https://doi.org/10.1016/j.corsci.2010.09.016
M. C. Zhao, M. Liu, G. Song, and A. Atrens, “Influence of the β-phase morphology on the corrosion of the mg alloy az91,” Corrosion Science, vol. 50, no. 7, Apr. 26, 2008. [Online]. Available: https://doi.org/10.1016/j.corsci.2008.04.010
G. Song, A. L. Bowles, and D. H. StJohn, “Corrosion resistance of aged die cast magnesium alloy az91d,” Materials Science and Engineering: A, vol. 366, no. 1, Nov. 14, 2003. [Online]. Available: https://doi.org/10.1016/j.msea.2003.08.060
L. Yang and E. Zhang, “Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application,” Materials Science and Engineering: C, vol. 29, no. 5, Jan. 22, 2009. [Online]. Available: https://doi.org/10.1016/j.msec.2009.01.014
J. Gonzalez, R. Q. Hou, E. P. Nidadavolu, R. Willumeit-Römer, and F. Feyerabend, “Magnesium degradation under physiological conditions – best practice,” Bioactive Materials, vol. 3, no. 2, Feb. 14, 2018. [Online]. Available: https://doi.org/10.1016/j.bioactmat.2018.01.003
L. Bai, G. Kou, K. Zhao, G. Chen, and F. Yan, “Effect of in-situ micro-arc oxidation coating on the galvanic corrosion of az31mg coupled to aluminum alloys,” Journal of Alloys and Compounds, vol. 775, Oct. 15, 2018. [Online]. Available: https://doi.org/10.1016/j.jallcom.2018.10.154
Y. Ren, E. Babaie, B. Lin, and S. B. Bhaduri, “Microwave-assisted magnesium phosphate coating on the az31 magnesium alloy,” Biomedical Materials, vol. 12, no. 4, Aug. 2017. [Online]. Available: https://doi.org/10.1088/1748-605X/aa78c0
Y. Reyes, A. Durán, and Y. Castro, “Glass-like cerium sol-gel coatings on az31b magnesium alloy for controlling the biodegradation of temporary implants,” Surface and Coatings Technology, vol. 307, no. Part A, Sep. 26, 2016. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2016.09.056
J.-M. Seitz, K. Collier, E. Wulf, D. Bormann, and F.-W. Bach, “Comparison of the corrosion behavior of coated and uncoated magnesium alloys in an in vitro corrosion environment,” Advanced Engineering Materials, vol. 13, no. 9, May. 23, 2011. [Online]. Available: https://doi.org/10.1002/adem.201080144
P. Makkar, H. J. Kang, A. R. Padalhin, I. Park, B.-G. Moon, and et al., “Development and properties of duplex mgf2/pcl coatings on biodegradable magnesium alloy for biomedical applications,” PLoS One, vol. 13, no. 4, Apr. 02, 2018. [Online]. Available: https://doi.org/10.1371/journal.pone.0193927
G. Song, “Recent progress in corrosion and protection of magnesium alloys,” Advanced Engineering Materials, vol. 7, no. 7, Jul. 29, 2005. [Online]. Available: https://doi.org/10.1002/adem.200500013
W. Qiu, Y. Li, G. Huang, J. Chen, Y. Ren, and et al., “Corrosion behavior of as-cast az91 magnesium alloy with vn particle additions in nacl solution,” Transactions of Nonferrous Metals Society of China, vol. 33, no. 5, Jun. 12, 2023. [Online]. Available: https://doi.org/10.1016/S1003-6326(23)66191-6
H. Zhang, Y. Zhao, J. Liu, J. Xu, D. Guo, and et al., “Impact of rare earth elements on micro-galvanic corrosion in magnesium alloys: A comparative study of mg-nd and mg-y binary alloys,” International Journal of Electrochemical Science, vol. 18, no. 6, Apr. 20, 2023. [Online]. Available: https://doi.org/10.1016/j.ijoes.2023.100160
L. A. Rojas-Flórez, H. A. Briceño-Urbina, and C. A. Hernández-Barrios, “Síntesis y evaluación de recubrimientos base fl uoruro empleando fuentes alternativas al hf sobre la aleación elektron 21 para la fabricación de implantes ortopédicos biodegradables,” Revista ION, vol. 28, no. 2, Jul-Dec. 2015. [Online]. Available: https://doi.org/10.18273/revion.v28n2-2015001
M. Curioni, “The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging,” Electrochimica Acta, vol. 120, Jan. 03, 2014. [Online]. Available: https://doi.org/10.1016/j.electacta.2013.12.109
E. P. S. Nidadavolu, F. Feyerabend, T. Ebel, R. Willumeit-Romer, and M. Dahms, “On the determination of magnesium degradation rates under physiological conditions,” Materials, vol. 9, no. 8, Jul. 28, 2016. [Online]. Available: https://doi.org/10.3390/ma9080627
L. Liu, K. Gebresellasie, B. Collins, H. Zhang, Z. Xu, and et al., “Degradation rates of pure zinc, magnesium, and magnesium alloys measured by volume loss, mass loss, and hydrogen evolution,” Applied Sciences, vol. 8, no. 9, Aug. 25, 2018. [Online]. Available: https://doi.org/10.3390/app8091459
A. Samaniego, I.Llorente, and S. Feliu-Jr, “Combined effect of composition and surface condition on corrosion behaviour of magnesium alloys az31 and az61,” Corrosion Science, vol. 68, Nov. 14, 2012. [Online]. Available: https://doi.org/10.1016/j.corsci.2012.10.034
H. R. Bakhsheshi-Rad, E. Hamzah, M. Daroonparvar, R. Ebrahimi-Kahrizsangi, and M. Medraj, “In-vitro corrosion inhibition mechanism of fluorine-doped hydroxyapatite and brushite coated mg–ca alloys for biomedical applications,” Ceramics International, vol. 40, no. 6, Jan. 07, 2014. [Online]. Available: https://doi.org/10.1016/j.ceramint.2013.12.147
N. T. Kirkland, N. Birbilis, and M. P. Staiger, “Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations,” Acta Biomaterialia, vol. 8, no. 3, Nov. 18, 2011. [Online]. Available: https://doi.org/10.1016/j.actbio.2011.11.014
G. S. Frankel and A. S. ad N. Birbilis, “Evolution of hydrogen at dissolving magnesium surfaces,” Corrosion Science, vol. 70, Jan. 16, 2013. [Online]. Available: https://doi.org/10.1016/j.corsci.2013.01.017
C. L. Liu, Y. J. Wang, R. C. Zeng, X. M. Zhang, W. J. Huang, and et al., “In vitro corrosion degradation behaviour of mg–ca alloy in the presence of albumin,” Corrosion Science, vol. 52, no. 10, Jun. 15, 2010. [Online]. Available: https://doi.org/10.1016/j.corsci.2010.06.003
A. Abdal-hay, M. Dewidar, J. Lim, and J. K. Lim, “Enhanced biocorrosion resistance of surface modified magnesium alloys using inorganic/organic composite layer for biomedical applications,” Ceramics International, vol. 40, no. 1, Aug. 06, 2013. [Online]. Available: https://doi.org/10.1016/j.ceramint.2013.07.142
Z. Chun-Yan, Z. Rong-Chang, L. Cheng-Long, and G. Jiao-Cheng, “Comparison of calcium phosphate coatings on mg–al and mg–ca alloys and their corrosion behavior in hank’s solution,” Surface and Coatings Technology, vol. 204, no. 21-22, Apr. 18, 2010. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2010.04.038
S. Fajardo and G. S. Frankel, “Gravimetric method for hydrogen evolution measurements on dissolving magnesium,” Journal of The Electrochemical Society, vol. 162, no. 14, Sep. 25, 2015. [Online]. Available: https://doi.org/10.1149/2.0241514jes
S. Lebouil, A. Duboin, F. Monti, P. Tabeling, P. Volovitch, and et al., “A novel approach to on-line measurement of gas evolution kinetics: Application to the negative difference effect of mg in chloride solution,” Electrochimica Acta, vol. 124, Jul. 31, 2013. [Online]. Available: https://doi.org/10.1016/j.electacta.2013.07.131
A. D. King, N. Birbilis, and J. R. Scully, “Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study,” Electrochimica Acta, vol. 121, Jan. 04, 2014. [Online]. Available: https://doi.org/10.1016/j.electacta.2013.12.124
Y. Jang, Z. Tan, C. Jurey, B. Collins, A. Badve, and et al., “Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated az31 magnesium alloy using a mouse model of subcutaneous implant,” Materials Science and Engineering: C, vol. 45, Sep. 06, 2014. [Online]. Available: https://doi.org/10.1016/j.msec.2014.08.052
S. Feliu-Jr, “Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges,” Metals, vol. 10, no. 6, Jun. 10, 2020. [Online]. Available: https://doi.org/10.3390/met10060775
C. Wang, B. Jiang, M. Liu, and Y. Ge, “Corrosion characterization of micro-arc oxidization composite electrophoretic coating on az31b magnesium alloy,” Journal of Alloys and Compounds, vol. 621, Oct. 05, 2014. [Online]. Available: https://doi.org/10.1016/j.jallcom.2014.09.168
L. Wolters, S. Besdo, N. Angrisani, P. Wriggers, B. Hering, and et al., “Degradation behaviour of lae442-based plate–screw-systems in an in vitro bone model,” Materials Science and Engineering: C, vol. 49, Jan. 07, 2015. [Online]. Available: https://doi.org/10.1016/j.msec.2015.01.019
H.-S. Hang, Y. Minghui, H.-K. Seok, J.-Y. Byun, P.-R. Cha, and et al., “The modification of microstructure to improve the biodegradation and mechanical properties of a biodegradable mg alloy,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 20, Dec. 28, 2012. [Online]. Available: https://doi.org/10.1016/j.jmbbm.2012.12.007
A. Zakiyudding and K. Lee, “Effect of a small addition of zinc and manganese to mg–ca based alloys on degradation behavior in physiological media,” Journal of Alloys and Compounds, vol. 629, Dec. 31, 2014. [Online]. Available: https://doi.org/10.1016/j.jallcom.2014.12.181
M. Echeverry-Rendón, L. F. Berrio, S. M. Robledo, J. A. Calderón, J. G. Castaño, and et al., “Corrosion resistance and biological properties of pure magnesium modified by peo in alkaline phosphate solutions,” Corrosion and Materials Degradation, vol. 4, no. 2, Mar. 23, 2023. [Online]. Available: https://doi.org/10.3390/cmd4020012
X. N. Gu, N. Li, W. R. Zhou, Y. F. Zheng, X. Zhao, and et al., “Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a mg–ca alloy,” Acta Biomaterialia, vol. 7, no. 4, Dec. 08, 2010. [Online]. Available: https://doi.org/10.1016/j.actbio.2010.11.034
S. Gaur, R. K. Singh-Raman, and A. S. Khanna, “In vitro investigation of biodegradable polymeric coating for corrosion resistance of mg-6zn-ca alloy in simulated body fluid,” Materials Science and Engineering: C, vol. 42, May. 22, 2014. [Online]. Available: https://doi.org/10.1016/j.msec.2014.05.035
Q. Sun, J. Yang, R. Tian, X. Fan, Z. Liao, and et al., “Enhanced corrosion and wear resistances in a precipitate-hardened magnesium alloy by laser surface remelting,” Materials Characterization, vol. 193, Sep. 15, 2022. [Online]. Available: https://doi.org/10.1016/j.matchar.2022.112306
H. Liu, J. Gu, Z. Tong, D. Yang, H. Yang, and et al., “Improving stress corrosion cracking resistance of az31 magnesium alloy in hanks’ solution via phosphate conversion with laser shock peening pretreatment,” Materials Today Communications, vol. 31, May. 13, 2022. [Online]. Available: https://doi.org/10.1016/j.mtcomm.2022.103678
D. B. Pokharel, L. Wu, J. Dong, A. P. Yadav, D. B. Subedi, and et al., “Effect of glycine addition on the in-vitro corrosion behavior of az31 magnesium alloy in hank’s solution,” Journal of Materials Science & Technology, vol. 81, Jan. 05, 2021. [Online]. Available: https://doi.org/10.1016/j.jmst.2021.01.007
J. da Silva-Rodríguez, L. Marasca-Antonini, A. A. D. C. Bastos, J. Zhou, and C. de Fraga-Malfatti, “Corrosion resistance and tribological behavior of zk30 magnesium alloy coated by plasma electrolytic oxidation,” Surface and Coatings Technology, vol. 410, Feb. 19, 2021. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2021.126983
J. Dou, J. Wang, H. Li, Y. Lu, H. Yu, and et al., “Enhanced corrosion resistance of magnesium alloy by plasma electrolytic oxidation plus hydrothermal treatment,” Surface and Coatings Technology, vol. 424, Sep. 03, 2021. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2021.127662
H. S. Brar, I. S. Berglund, J. B. Allen, and M. V. Manuel, “The role of surface oxidation on the degradation behavior of biodegradable mg–re (gd, y, sc) alloys for resorbable implants,” Materials Science and Engineering: C, vol. 40, Mar. 30, 2014. [Online]. Available: https://doi.org/10.1016/j.msec.2014.03.055
R.-C. Zeng, Y. Hu, S.-K. Guan, H.-Z. Cui, and E.-H. Han, “Corrosion of magnesium alloy az31: The influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution,” Corrosion Science, vol. 86, May. 13, 2014. [Online]. Available: https://doi.org/10.1016/j.corsci.2014.05.006
D. Zander and N. Z. Zumdick, “Influence of ca and zn on the microstructure and corrosion of biodegradable mg–ca–zn alloys,” Corrosion Science, vol. 93, Jan. 21, 2015. [Online]. Available: https://doi.org/10.1016/j.corsci.2015.01.027
G. G. Perrault, “The potential-ph diagram of the magnesium-water system,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 51, no. 1, Dec. 02, 2010. [Online]. Available: https://doi.org/10.1016/S0022-0728(74)80298-6
J. Jiang, F. Zhang, A. Ma, D. Song, J. Chen, and et al., “Biodegradable behaviors of ultrafine-grained ze41a magnesium alloy in dmem solution,” Metals, vol. 6, no. 1, Dec. 23, 2015. [Online]. Available: https://doi.org/10.3390/met6010003
M.-C. Zhao, M. Liu, G.-L. Song, and A. Atrens, “Influence of ph and chloride ion concentration on the corrosion of mg alloy ze41,” Corrosion Science, vol. 50, no. 11, Aug. 26, 2008. [Online]. Available: https://doi.org/10.1016/j.corsci.2008.08.023
N.-G. Wang, R.-C. Wang, C.-Q. Peng, Y. Feng, and X.-Y. Zhang, “Corrosion behavior of mg-al-pb and mg-al-pb-zn-mn alloys in 3.5Transactions of Nonferrous Metals Society of China, vol. 20, no. 10, Nov. 07, 2010. [Online]. Available: https://doi.org/10.1016/S1003-6326(09)60398-8
Z. Shi, J. X. Jia, and A. Atrens, “Galvanostatic anodic polarisation curves and galvanic corrosion of high purity mg in 3.5mg(oh)2,” Corrosion Science, vol. 60, Dec. 14, 2011. [Online]. Available: https://doi.org/10.1016/j.corsci.2011.12.002
T. Watanabe, Y. C. Huang, and R. Komatsu, “Solubility of hydrogen in magnesium,” Journal of Japan Institute of Light Metals, vol. 26, no. 2, 1976. [Online]. Available: https://doi.org/10.2464/jilm.26.76
J. D. Shearouse and B. A. Mikucki, “The origin of microporosity in magnesium alloy az91,” SAE International, United States, Tech. Rep. 940776, Mar. 01, 1994. [Online]. Available: https://doi.org/10.4271/940776
M. Kappes, M. Lannuzzi, and R. M. Carranza, “Hydrogen embrittlement of magnesium and magnesium alloys: A review,” Journal of The Electrochemical Society, vol. 160, no. 4, Feb. 26 2013. [Online]. Available: https://doi.org/10.1149/2.023304jes
S. V. Lamaka, B. Vaghefinazari, D. Mei, R. P. Petrauskas, and D. Höche, “Comprehensive screening of mg corrosion inhibitors,” Corrosion Science, vol. 128, Jul. 25, 2017. [Online]. Available: https://doi.org/10.1016/j.corsci.2017.07.011
W.-D. Mueller, “Electrochemical techniques for assessment of corrosion behaviour of mg and mg-alloys,” BioNanoMaterials, vol. 16, no. 1, May. 26, 2015. [Online]. Available: https://doi.org/10.1515/bnm-2015-0006
D. Xue, Y. Yun, M. J. Schulz, and V. Shanov, “Corrosion protection of biodegradable magnesium implants using anodization,” Materials Science and Engineering: C, vol. 31, no. 2, Aug. 25, 2010. [Online]. Available: https://doi.org/10.1016/j.msec.2010.08.019
M. E. Straumanis and B. K. Bhatia, “Disintegration of magnesium while dissolving anodically in neutral and acidic solutions,” Journal of The Electrochemical Society, vol. 110, no. 5, 1963. [Online]. Available: https://doi.org/10.1149/1.2425763
C. R. Weber, G. Knörnschild, and L. F. P. Dick, “The negative-difference effect during the localized corrosion of magnesium and of the az91hp alloy,” Journal of the Brazilian Chemical Society, vol. 14, no. 4, Aug. 2003. [Online]. Available: https://doi.org/10.1590/S0103-50532003000400015
Z. Shi, M. Liu, and A. Atrens, “Measurement of the corrosion rate of magnesium alloys using tafel extrapolation,” Corrosion Science, vol. 52, no. 2, Oct. 15, 2009. [Online]. Available: https://doi.org/10.1016/j.corsci.2009.10.016
R. L. Petty, A. W. Davidson, and J. Kleinberg, “The anodic oxidation of magnesium metal: Evidence for the existence of unipositive magnesium,” Journal of American Chemical Society, vol. 76, no. 2, Jan. 01, 1954. [Online]. Available: https://doi.org/10.1021/ja01631a013
G. Song and A. Atrens, “Understanding magnesium corrosion—a framework for improved alloy performance,” Advanced Engineering Materials, vol. 5, no. 12, Jan. 08, 2004. [Online]. Available: https://doi.org/10.1002/adem.200310405
C. Liu, J. Liang, J. Zhou, L. Wang, and Q. Li, “Effect of laser surface melting on microstructure and corrosion characteristics of am60b magnesium alloy,” Applied Surface Science, vol. 343, Mar. 20, 2015. [Online]. Available: https://doi.org/10.1016/j.apsusc.2015.03.067
M. I. Jamesh, G. Wu, Y. Zhao, D. R. Mckenzie, M. M. M. Bilek, and et al., “Effects of zirconium and oxygen plasma ion implantation on the corrosion behavior of zk60 mg alloy in simulated body fluids,” Corrosion Science, vol. 82, Dec. 04, 2013. [Online]. Available: https://doi.org/10.1016/j.corsci.2013.11.044
X.-B. Liu, D. Shan, Y.-W. Song, and E.-H. Han, “Effects of heat treatment on corrosion behaviors of mg-3zn magnesium alloy,” Transactions of Nonferrous Metals Society of China, vol. 20, no. 7, Aug. 10, 2010. [Online]. Available: https://doi.org/10.1016/S1003-6326(09)60302-2
T. Mi, B. Jiang, Z. Liu, and L. Fan, “Plasma formation mechanism of microarc oxidation,” Electrochimica Acta, vol. 123, no. 7, Jan. 23, 2014. [Online]. Available: https://doi.org/10.1016/j.electacta.2014.01.047
D. Veys-Renaux, C.-E. Barchiche, and E. Rocca, “Corrosion behavior of az91 mg alloy anodized by low-energy micro-arc oxidation: Effect of aluminates and silicates,” Surface and Coatings Technology, vol. 251, Apr. 26, 2014. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2014.04.031
L. Zhao, C. Cui, and Q. W. S. Bu, “Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications,” Corrosion Science, vol. 52, no. 7, Mar. 15, 2010. [Online]. Available: https://doi.org/10.1016/j.corsci.2010.03.008
T. Zhao, Z. Wang, Y. Feng, and Q. Li, “Synergistic corrosion inhibition of sodium phosphate and sodium dodecyl sulphate on magnesium alloy az91 in 3.5 wt2022. [Online]. Available: https://doi.org/10.1016/j.mtcomm.2022.103568
H. R. Bakhsheshi-Rad, M. H. Idris, M. R. Abdul-Kadir, A. Ourdjini, M. Medraj, and et al., “Mechanical and bio-corrosion properties of quaternary mg–ca–mn–zn alloys compared with binary mg–ca alloys,” Materials & Design, vol. 53, Jul. 03, 2013. [Online]. Available: https://doi.org/10.1016/j.matdes.2013.06.055
D. S. A. Ma, J. Jiang, P. Lin, D. Yang, and J. Fan, “Corrosion behavior of equal-channel-angular-pressed pure magnesium in nacl aqueous solution,” Corrosion Science, vol. 52, no. 2, Oct. 13, 2009. [Online]. Available: https://doi.org/10.1016/j.corsci.2009.10.004
K. C. Tekin, U. Malayoğlu, and S. Shrestha, “Electrochemical behavior of plasma electrolytic oxide coatings on rare earth element containing mg alloys,” Surface and Coatings Technology, vol. 236, Oct. 31, 2013. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2013.10.051
L. Li, Z. Huang, L. Chen, L. Zhang, M. Li, and et al., “Electrochemical corrosion behavior of az91d magnesium alloy-graphene nanoplatelets composites in simulated body fluids,” Journal of Materials Research and Technology, vol. 24, Mar. 08, 2023. [Online]. Available: https://doi.org/10.1016/j.jmrt.2023.01.232
P. B. Srinivasan, J. Liang, C. Blawert, M. Störmer, and W. Dietzel, “Characterization of calcium containing plasma electrolytic oxidation coatings on am50 magnesium alloy,” Applied Surface Science, vol. 256, no. 12, Jan. 29, 2010. [Online]. Available: https://doi.org/10.1016/j.apsusc.2010.01.069
C. Hu, Q. Le, X. Zhou, C. Cheng, R. Guo, X. Li, and et al., “The growth and corrosion mechanism of zn-based coating on az31 magnesium alloys by novel hot-dip process,” Materials Characterization, vol. 189, May. 18, 2022. [Online]. Available: https://doi.org/10.1016/j.matchar.2022.111988
D. Sreekanth, N. Rameshbabu, and K. Venkateswarlu, “Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on az31 magnesium alloy by plasma electrolytic oxidation,” Ceramics International, vol. 38, no. 6, Feb. 21, 2012. [Online]. Available: https://doi.org/10.1016/j.ceramint.2012.02.040
H. Du, Z. Wei, H. Wang, E. Zhang, L. Zuo, and et al., “Surface microstructure and cell compatibility of calcium silicate and calcium phosphate composite coatings on mg–zn–mn–ca alloys for biomedical application,” Colloids and Surfaces B: Biointerfaces, vol. 83, no. 1, Nov. 09, 2010. [Online]. Available: https://doi.org/10.1016/j.colsurfb.2010.11.003
B. N. Grgur, B. Z. Jugovic, and M. M. Gvozdenovic, “Influence of chloride ion concentration on initial corrosion of az63 magnesium alloy,” Transactions of Nonferrous Metals Society of China, vol. 32, no. 4, May 12, 2022. [Online]. Available: https://doi.org/10.1016/S1003-6326(22)65861-8
J. Zhang, S. Hiromoto, T. Yamazaki, J. Niu, H. Huang, G. Jia, and et al., “Effect of macrophages on in vitro corrosion behavior of magnesium alloy,” Journal of Biomedical Materials Research Part A, vol. 104, no. 10, May. 25, 2016. [Online]. Available: https://doi.org/10.1002/jbm.a.35788
Q. Peng, H. Fu, J. Pang, J. Zhang, and W. Xiao, “Preparation, mechanical and degradation properties of mg–y-based microwire,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 29, Oct. 12, 2013. [Online]. Available: https://doi.org/10.1016/j.jmbbm.2013.09.015
M. I. James, G. Wu, Y. Zhao, D. R. Mckenzie, M. M. M. Bilek, and et al., “Electrochemical corrosion behavior of biodegradable mg–y–re and mg–zn–zr alloys in ringer’s solution and simulated body fluid,” Corrosion Science, vol. 91, Nov. 15, 2014. [Online]. Available: https://doi.org/10.1016/j.corsci.2014.11.015
L.-Y. Cui, Y. Hu, R.-C. Zeng, Y.-X. Yang, D.-D. Sun, and et al., “New insights into the effect of tris-hcl and tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions,” Journal of Materials Science & Technology, vol. 33, no. 9, Jan. 07, 2017. [Online]. Available: https://doi.org/10.1016/j.jmst.2017.01.005
N. Dinodi and A. N. Shetty, “Electrochemical investigations on the corrosion behaviour of magnesium alloy ze41 in a combined medium of chloride and sulphate,” Journal of Magnesium and Alloys, vol. 1, no. 3, Sep. 15, 2013. [Online]. Available: https://doi.org/10.1016/j.jma.2013.08.003
R. O. Hussein, D. O. Northwood, and X. Nie, “The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (peo) coated magnesium alloys,” Surface and Coatings Technology, vol. 237, Sep. 18, 2013. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2013.09.021
S. A. Bacha, I. Aubert, O. Devos, M. Zakhour, M. Nakhl, and et al., “Corrosion of pure and milled mg17al12 in “model” seawater solution,” International Journal of Hydrogen Energy, vol. 45, no. 32, May. 01, 2020. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2020.04.030
M. Ascencio, M. Pekguleryuz, and S. Omanovic, “An investigation of the corrosion mechanisms of we43 mg alloy in a modified simulated body fluid solution: The influence of immersion time,” Corrosion Science, vol. 87, Jul. 16, 2014. [Online]. Available: https://doi.org/10.1016/j.corsci.2014.07.015
M. Pereira-Gomes, I. Costa, and N. Pébère, “On the corrosion mechanism of mg investigated by electrochemical impedance spectroscopy,” Electrochimica Acta, vol. 306, Mar. 14, 2019. [Online]. Available: https://doi.org/10.1016/j.electacta.2019.03.080
A. Doepke, J. Kuhlmann, X. Guo, R. T. Voorhees, and W. R. Heineman, “A system for characterizing mg corrosion in aqueous solutions using electrochemical sensors and impedance spectroscopy,” Acta Biomaterialia, vol. 9, no. 11, Jul. 18, 2013. [Online]. Available: https://doi.org/10.1016/j.actbio.2013.07.011
L. S. K. Leinartas, E. Juzeliūnas, D. B. A. Grigucevičienė, and et al., “Anticorrosion performance of hafnium oxide ultrathin films on az31 magnesium alloy,” Surface and Coatings Technology, vol. 397, Jun. 09, 2020. [Online]. Available: https://doi.org/10.1016/j.surfcoat.2020.126046
K. Dorado-Bustamante, B. Zuluaga-Díaz, and H. Estupiñán-Duran, “Análisis de la bioactividad de mg az31 recubierta por peo (plasma electrolytic oxidation),” DYNA, vol. 85, no. 205, Apr. 01, 2018. [Online]. Available: https://doi.org/10.15446/dyna.v85n205.69573
M. Curioni, F. Scenini, T. monetta, and F. Bellucci, “Correlation between electrochemical impedance measurements and corrosion rate of magnesium investigated by real-time hydrogen measurement and optical imaging,” Electrochimica Acta, vol. 166, Mar. 11, 2015. [Online]. Available: https://doi.org/10.1016/j.electacta.2015.03.050
E. Bütev-Öcal, Z. Esen, K. Aydinol, and A. F. Dericioğlu, “Comparison of the short and long-term degradation behaviors of as-cast pure mg, az91 and we43 alloys,” Materials Chemistry and Physics, vol. 241, Oct. 23, 2019. [Online]. Available: https://doi.org/10.1016/j.matchemphys.2019.122350
Y. Liu, M. Curioni, and Z. Liu, “Correlation between electrochemical impedance measurements and corrosion rates of mg-1ca alloy in simulated body fluid,” Electrochimica Acta, vol. 264, Feb. 06, 2018. [Online]. Available: https://doi.org/10.1016/j.electacta.2018.01.121
W. Aperador-Chaparro, G. Rodríguez-Zamora, and F. Franco-Arenas, “Estimación de la corrosión intergranular en la aleación de magnesio az31b soldada por fricción - agitación,” Revista de Ingeniería, no. 39, Jun-Dec. 2013. [Online]. Available: http://www.scielo.org.co/scielo.php?pid=S0121-49932013000200007&script=sci_arttext
A. Atrens, Z. Shi, S. U. Mehreen, S. Johnston, G.-L. Song, and et al., “Review of mg alloy corrosion rates,” Journal of Magnesium and Alloys, vol. 8, no. 4, Sep. 28, 2020. [Online]. Available: https://doi.org/10.1016/j.jma.2020.08.002
A. Atrens, G.-L. Song, F. Cao, Z. Shi, and P. K. Bowen, “Advances in mg corrosion and research suggestions,” Journal of Magnesium and Alloys, vol. 1, no. 3, Oct. 10, 2013. [Online]. Available: https://doi.org/10.1016/j.jma.2013.09.003
M. Esmaily, J. E. Svensson, S. Fajardo, N. Birbilis, G. S. Frankel, and et al., “Fundamentals and advances in magnesium alloy corrosion,” Progress in Materials Science, vol. 89, May. 15, 2017. [Online]. Available: https://doi.org/10.1016/j.pmatsci.2017.04.011
A. Atrens, S. Johnston, Z. Shi, and M. S. Dargusch, “Viewpoint - understanding mg corrosion in the body for biodegradable medical implants,” Scripta Materialia, vol. 154, May. 30, 2018. [Online]. Available: https://doi.org/10.1016/j.scriptamat.2018.05.021
A. Atrens, S. Johnston, Z. Shi, and M. s. Dargusch, “Real-time monitoring of atmospheric magnesium alloy corrosion,” Journal of The Electrochemical Society, vol. 166, no. 11, Dec. 12, 2018. [Online]. Available: https://doi.org/10.1149/2.0011911jes
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.