Classic, fuzzy and predictive dtc strategies for the PMSM using the bacterial foraging algorithmas an online parameter estimator

Authors

  • Gabriel Noriega Simon Bolivar University
  • José Restrepo Simón Bolívar University
  • Alexander Bueno Simón Bolívar University
  • José M. Aller Simón Bolívar University
  • María I. Giménez Simón Bolívar University
  • Victor Guzmán Simón Bolívar University

DOI:

https://doi.org/10.17533/udea.redin.13152

Keywords:

PMSM, DTC, bacterial foraging, fuzzy inference system, parameter estimation, predictive control

Abstract

This work presents a comparison between four control techniques applied to drive a PMSM: Classic DTC, Modified DTC with a Fuzzy Inference System, Predictive DTC and Predictive DTC with Fuzzy Inference System. Parameters estimation for the predictive strategies is performed using a population-based search algorithm (Bacterial Foraging), which is able to calculate on line the PMSM parameters. The electric torque and stator flux linkages experimental results show that the predictive strategies that use the machine parameters estimated by the Bacterial Foraging Algorithm present a significant improvement when compared with non predictive techniques.

|Abstract
= 116 veces | PDF (ESPAÑOL (ESPAÑA))
= 52 veces|

Downloads

Download data is not yet available.

Author Biographies

Gabriel Noriega, Simon Bolivar University

Power Electronics Industrial Systems Group.

José Restrepo, Simón Bolívar University

Power Electronics Industrial Systems Group.

Alexander Bueno, Simón Bolívar University

Power Electronics Industrial Systems Group.

José M. Aller, Simón Bolívar University

Power Electronics Industrial Systems Group.

María I. Giménez, Simón Bolívar University

Power Electronics Industrial Systems Group.

Victor Guzmán, Simón Bolívar University

Power Electronics Industrial Systems Group.

References

F. Blaschke. “The principle of field orientation as applied to the new transvektor close-loop control system for rotating field machines”. Siemens Review. Vol. 34. 1972. pp. 217-220.

T. Naguchi, I. Takahashi. “A new quick-response and high eficiency control strategy of an induction motor”. IEEE Trans. on Ind. Appl. Vol. 22. 1986. pp. 820-827. DOI: https://doi.org/10.1109/TIA.1986.4504799

L. Zhong, M. Rahman, W. Hu, K. Lim. “Analysis of direct torque control in permanent magnet synchronous motor drives”. IEEE Transactions on Power Electronics. Vol. 12. 1997. pp. 528-536. DOI: https://doi.org/10.1109/63.575680

S. Chakrabarti, M. Ramamoorty, V. Kanetkar. “Reduction of torque ripple in direct torque control of induction motor drives using space vector modulation based pulse width modulation”. Power Electronics and Drive Systems. Vol. 1. 1997. pp.117-121.

L. Yanfei, K. Passino. “Biomimicry of Social Foraging Behavior for Distributed Optimization: Models, Principles, and Emergent Behaviors,” Journal of Optimization Theory and Applications. Vol. 115. Dec. 2002. pp. 603-628 DOI: https://doi.org/10.1023/A:1021207331209

K. Passino. “Biomimicry of bacterial foraging for distributed optimization and control”. IEEE Control System Magazine. Vol. 22. 2002. pp. 52-67. DOI: https://doi.org/10.1109/MCS.2002.1004010

D. Kim, J. Cho. “Disturbance rejection control of induction motor using bacteria foraging”. SCIS and ISIS. 2006. pp. 2277-2282.

G. Noriega, J. Restrepo, V. Guzmán, M. Giménez, J. Aller. On line parameter estimation of electric system using the bacterial foraging algorithm. EPE 13th European Conference on Power Electronics and Applications. 2009. pp. 1-7.

M. Ortega, J. Restrepo, J. Viola, M. Giménez, V. Guzmán. “Direct torque control of induction machines with current limitation and ripple reduction using fuzzy logic”. Rev. Téc. Ing. Univ. Zulia. No. 31. 2008. pp. 190-198.

I. Sarasola, J. Poza, M. Rodriguez, G. Abad. Predictive direct torque control for brushless doubly fed machine with reduced torque ripple at constant switching frequency. IEEE International Symposium on Industrial Electronics. Vigo. España. 2007. pp. 1074- 1079. DOI: https://doi.org/10.1109/ISIE.2007.4374747

J. Aller. Máquinas Eléctricas Rotativas. “La máquina Sincrónica”. Editorial Equinoccio. Caracas. Venezuela. 2008. pp. 343-399.

D. White, H. Woodson. Electromechanical Energy Conversion. “Dynamics of Synchronous Machine”. 1st ed. Ed. The MIT Press. New York. 1959. pp. 508-544.

A. Trzynadlowsky. Control of Induction Motors. “Direct torque and flux control”. Academic Press University of Nevada. Reno. 2000. pp. 137-157. DOI: https://doi.org/10.1016/B978-012701510-1/50008-8

G. Noriega. Forraje bacterialpara identificación de parámetros en línea de una máquina sincrónica con DTC predictivo. Dissertation, Universidad Simón Bolívar. Venezuela. 2009.

B. Bose. Modern Power Electronics and AC Drives. “Control and Estimation of Synchronous Motor Drives”. Prentice-Hall. United States of America. 2002. pp. 439-533

M. Giménez, V. Guzmán, J. Restrepo, J. Aller, A. Bueno, J. Viola, A. Millán, A. Cabello. “Plataforma: Development of an integrated dynamic test system for power electronics systems performance analysis”. Revista de la Facultad de ingeniería – UCV. Vol. 23. 2008. pp. 1-13.

S. Dewan, A. Straughen. Power semiconductor circuits. “Inverters”. Ed. John Wiley& Sons, Inc. United States of America. 1975. pp. 357-461.

Published

2012-10-10

How to Cite

Noriega, G., Restrepo, J., Bueno, A., Aller, J. M., Giménez, M. I., & Guzmán, V. (2012). Classic, fuzzy and predictive dtc strategies for the PMSM using the bacterial foraging algorithmas an online parameter estimator. Revista Facultad De Ingeniería Universidad De Antioquia, (64), 182–194. https://doi.org/10.17533/udea.redin.13152