Separation of base flow in upper part of the Lebrija river basin

Authors

  • Sully Gómez Industrial University of Santander
  • Jorge Guzmán Industrial University of Santander

DOI:

https://doi.org/10.17533/udea.redin.13536

Keywords:

stable isotopes, mass balance equation, stream flow recession, aquifers, base flow

Abstract

To make separation of base flow in the upper part of Lebrija River basin, we developed and applied physical concepts such as mass balance equation with natural tracers called stable isotopes of water and numerical algorithms based on stream flow recession from time series. These algorithms uses parameters  hat have physical meaning in the recession of the rivers and may represent behaviours non lineal in groundwater storage. Sampling of stable isotopes in rainwater, as in groundwater and rivers were made, taking into account the response of the components of hydrograph in several scales, seasonal and spatial. The analysis resulting from the recession parameters and equation for the mass balance equation validated the existence of aquifer systems in contact with the main river. The results obtained allow proposing a significative value for base flow in the Lebrija basin.

|Abstract
= 605 veces | PDF (ESPAÑOL (ESPAÑA))
= 130 veces|

Downloads

Download data is not yet available.

Author Biographies

Sully Gómez, Industrial University of Santander

School of Civil Engineering. GPH group.

Jorge Guzmán, Industrial University of Santander

School of Civil Engineering. GPH group.

References

D. Ward, R. Goldsmith. “Geología de los Cuadrángulos H-12 Bucaramanga y H-13 Pamplona, Departamento de Santander”. Boletín Geológico. Vol. XXI No. 1-3. 1973. pp.47-69. DOI: https://doi.org/10.32685/0120-1425/bolgeol21.1-3.1973.383

S. Gómez, J. Colegial. Interacción entre sistemas hidrogeológicos para el estudio del fenómeno de recarga en el macizo de Santander e identificación de acuíferos. Informe de Investigación UIS-Colciencias. 2003.pp.45-58.

S. Gómez, A. Anaya.“Acercamiento a un modelo conceptual de recarga de los acuíferos de la región de Bucaramanga.”Revista Avances en Recursos Hidráulicos. No.11. 2004. pp. 37-50.

UNESCO-IAEA. “Environmental isotopes in the hydrological cycle.” Principles and applications IHP-V Technical Documents in Hydrology. No. 39. 2001. pp. 35-52.

H. Craig. “Standard for reporting concentrations of deuterium and oxygen-18 in natural waters.”Sciences. Vol. 133. 1961. pp. 1833- 1834. DOI: https://doi.org/10.1126/science.133.3467.1833

I. Clark, P. Fritz. Environmental Isotopes in Hydrogeology. Ed. Lewis. New York (USA). 1997. pp.99-102.

J. J.Mcdonnell, M. bonnell, J. K. Stewart, A. J. Pearce.“Deuterium Variations in Store Rainfall: Implications for Stream Hydrograph Separation.”Water Res. Resear. Vol. 26 No. 3. 1990. pp. 455-458. DOI: https://doi.org/10.1029/WR026i003p00455

V. D. Lyne, M. Hollick. Stochastic Time-variable Rainfall-runoff Modeling in Hydrol. and Water ResourSymp. Institution of Engineers Australia. 1979. pp. 89-92.

T. G. Chapman. “A comparison of algorithms for stream flow recession and base flow separation”. Hydrological Processes. Vol. 13. 1999. pp.701-714. DOI: https://doi.org/10.1002/(SICI)1099-1085(19990415)13:5<701::AID-HYP774>3.0.CO;2-2

P. Furey, V. K. Gupta. “A physically based filter for separating base flow from stream flow time series”. WRR. Vol. 37. No. 1. 2001. pp. 2709-2722. DOI: https://doi.org/10.1029/2001WR000243

T. G. Chapman, R. J. Nathan, T. A. MacMahon. “Evaluation of automated Techniques for base flow and recession analyses”. Water Resour Research. Vol. 27. 1991. pp. 1783-1784. DOI: https://doi.org/10.1029/91WR01007

W. C. Boughton. A Hydrograph-based model for estimating the water yield of ungauged catchments. Hydrol. and Water Resour. Symp., Institution of Engineers Australia. Newcastle. 1993. pp. 317-324.

A. J. Jakeman, G. M. Hornberger. How much complexity is warranted in rainfall-runoff facility.Hydrol Paper 25. Colorado State University Fort Collins. 1993. pp. 243-248.

V. Smakhtin. “Low flow hydrology: a review”. Journal of hydrology. Vol. 240. 2001. pp. 147-186. DOI: https://doi.org/10.1016/S0022-1694(00)00340-1

S. Gómez, D. Guzmán, H. Camacho. Red de Muestreadores de Isótopos Estables de la Precipitación en la CSRL. Memorias II Congreso Colombiano de hidrogeología. Bucaramanga. Colombia. 2006. pp.65- 72.

J. Maldonado, W. Velasco. Implementación de una metodología para el muestreo de isótopos estables y aplicación a la separación de flujo base. Proyecto de Grado. UIS. 2005. pp. 28-69

J. Guzmán, G. Balaguera, A. Serrano. Separación de Flujo Base en la CSRL en Estación Café Madrid. Memorias II Congreso Colombiano de hidrogeología. Bucaramanga, Colombia. 2006. pp.73-80.

J. J. Vásquez, L. Arroyave. Técnica de Kriging para espacializar isótopos estables en la Cuenca Superior del Río Lebrija. Proyecto de Grado. UIS. 2009. pp.52- 78.

Published

2012-11-15

How to Cite

Gómez, S., & Guzmán, J. (2012). Separation of base flow in upper part of the Lebrija river basin. Revista Facultad De Ingeniería Universidad De Antioquia, (61), 41–52. https://doi.org/10.17533/udea.redin.13536