Piecewise line-symmetric spherical motions for orientation interpolation in 5-Axis CNC tool path planning
DOI:
https://doi.org/10.17533/udea.redin.13658Keywords:
biarcs, orientation interpolatio, computerized numerical control, path planning, quaternionsAbstract
This paper employs quaternion biarcs to interpolate a set of orientations with angular velocity constraints. The resulting quaternion curve represents a piecewise line-symmetric spherical motion with C1 continuity. The purpose of this effort is to put line-symmetric motions into use from the viewpoint of motion approximation and interpolation, and to present their potential applications in Computerized Numerical Control (CNC) machining simulation and tool path planning. Quaternion biarcs may be used to approximate B-spline quaternion curves that represent rational spherical motions that have applications in robot path planning, CAD/CAM and computer graphics.
Downloads
References
L. Piegl, W. Tiller. “Data Approximation Using Biarcs”. Engineering with Computers. Vol. 18. 2002. pp. 59-65. DOI: https://doi.org/10.1007/s003660200005
J. C. Latombe. Robot Motion Planning. Ed. Kluwer Academic Publishers. Boston, MA. 1991. pp. 5-11. DOI: https://doi.org/10.1007/978-1-4615-4022-9
T. Lozano Pérez. “Spatial Planning: A Configuration Space Approach”. IEEE Transactions on Computers. Vol. 32. 1983. pp. 108-120. DOI: https://doi.org/10.1109/TC.1983.1676196
F. Schwarzer, M. Saha, J. C. Latombe. “Exact Collision Checking of Robot Paths”. Algorithmic Foundations of Robotics. V. J. D. Boissonnat, J. Burdick, K. Goldberg, S. Hutchinson (editors). Ed. Springer. Berlin, Alemania. 2004. pp. 25-41. DOI: https://doi.org/10.1007/978-3-540-45058-0_3
A. Gasparetto, V. Zanotto. “A New Method for Smooth Trajectory Planning of Robot Manipulators”. Mechanism and Machine Theory. Vol. 42. 2007. pp. 455-471. DOI: https://doi.org/10.1016/j.mechmachtheory.2006.04.002
J. J. Chou, D. C. H. Yang. “On the Generation of Coordinated Motion of Five-Axis CNC/CMM Machines”. Journal of Engineering for Industry. Vol. 114. 1992. pp. 15-22. DOI: https://doi.org/10.1115/1.2899753
K. Morishige, K. Kase, Y. Takeuchi. “Collision-Free Tool Path Generation Using 2-Dimensional C-space for 5-Axis Control Machining”. The International Journal of Advanced Manufacturing Technology. Vol. 13. 1997. pp. 393-400. DOI: https://doi.org/10.1007/BF01179033
C. S. Jun, K. Cha, Y. S. Lee. “Optimizing Tool Orientations for 5-Axis Machining by ConfigurationSpace Search Method”. Computer-Aided Design. Vol. 35. 2003. pp. 549-566. DOI: https://doi.org/10.1016/S0010-4485(02)00077-5
Y. Koren, R. S. Lin. “Five-Axis Surface Interpolators”. Annals of the CIRP. Vol. 44. 1995. pp. 379-382. DOI: https://doi.org/10.1016/S0007-8506(07)62346-4
M. C. Tsai, M. Y. Cheng, K. F. Lin, N. C. Tsai. On Acceleration/Deceleration before Interpolation for CNC Motion Control. ICM ‘05, IEEE International Conference on Mechatronics. 2005. pp. 382-387.
B. Ravani, B. Roth. “Mappings of Spatial Kinematics”. ASME Journal of Mechanisms, Transmissions, and Automation in Design. Vol. 106. 1984. pp. 341-347. DOI: https://doi.org/10.1115/1.3267417
O. Bottema, B. Roth. Theoretical Kinematics. Ed. Dover Publications. New York. 1990. pp. 518-521.
J. M. McCarthy. An Introduction to Theoretical Kinematics. Ed. The MIT Press. Cambridge, MA. 1990. pp. 60-62.
Q. J. Ge, M. Sirchia. “Computer Aided Geometric Design of Two-Parameter Freeform Motions”. ASME Journal of Mechanical Design. Vol. 121. 1999. pp. 502-506. DOI: https://doi.org/10.1115/1.2829489
K. Shoemake. “Animating Rotations with Quaternion Curves”. ACM SIGGRAPH Computer Graphics. Vol. 19. 1985. pp. 245-254. DOI: https://doi.org/10.1145/325165.325242
F. Y. Lin, T. S. Lü. “Development of a Robot System for Complex Surfaces Polishing Based on CL Data”. The International Journal of Advanced Manufacturing Technology. Vol. 26. 2005. pp. 1132-1137. DOI: https://doi.org/10.1007/s00170-004-2088-5
M. C. Ho, Y. R. Hwang, C. H. Hu. “Five-Axis Tool Orientation Smoothing Using Quaternion Interpolation Algorithm”. International Journal of Machine Tools and Manufacture. Vol. 43. 2003. pp. 1259-1267. DOI: https://doi.org/10.1016/S0890-6955(03)00107-X
W. Wang, B. Joe. “Orientation Interpolation in Quaternion Space Using Spherical Biarcs”. Proceedings Graphics Interface’93. Ed. Morgan Kaufmann. Toronto, Canadá. 1993. pp. 24-32.
B. Jüttler. “Visualization of Moving Objects Using Dual Quaternion Curves”. Computers and Graphics. Vol. 18. 1994. pp. 315-326. DOI: https://doi.org/10.1016/0097-8493(94)90033-7
S. Li, Q. J. Ge. “Rational Bézier Line-Symmmetric Motions”. ASME Journal of Mechanical Design. Vol. 127. 2005. pp. 222-226. DOI: https://doi.org/10.1115/1.1798251
A. Purwar, Q. J. Ge. “On the Effect of Dual Weights in Computer Aided Design of Rational Motions”. ASME Journal of Mechanical Design. Vol. 127. 2005. pp. 967-972. DOI: https://doi.org/10.1115/1.1906263
J. Rossignac, A. Requicha. “Piecewise Circular Curves for Geometric Modeling”. IBM Journal of Research and Development. Vol. 31. 1987. pp. 296-313. DOI: https://doi.org/10.1147/rd.313.0296
G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. 4th ed. Ed.Academic Press. San Diego, CA. 1996. pp. 196- 211.
R. Klass, P. Schramm. “Numerically-Controlled Milling of CAD Surface Data”. Geometric Modeling: Methods and Applications. H. Hagen, D. Roller (editors). Ed. Springer-Verlag. New York, USA. 1991. pp. 213-225. DOI: https://doi.org/10.1007/978-3-642-76404-2_9
W. Zhang, Y. F. Zhang, Q. J. Ge. “Interference-Free Tool Path Generation for 5-Axis Sculputured Surface Machining Using Rational Bézier Motions of a FlatEnd Cutter”. International Journal of Production Research. Vol. 43. 2005. pp. 4103-4124. DOI: https://doi.org/10.1080/00207540500168188
L. Piegl, W. Tiller. The NURBS Book. Ed. Springer. Berlin, Alemania. 1995. pp. 382-404. DOI: https://doi.org/10.1007/978-3-642-97385-7
H. Akima. “A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures”. Journal of the ACM. Vol. 17. 1970. pp. 589-602. DOI: https://doi.org/10.1145/321607.321609
T. Arney. Dynamic Path Planning and Execution Using B-Splines. ICIAFS 2007, Third International Conference on Information and Automation for Sustainability. 2007. pp. 1-6. DOI: https://doi.org/10.1109/ICIAFS.2007.4544771
Q. J. Ge, B. Ravani. “Geometric Construction of Bézier Motions”. ASME Journal of Mechanical Design. Vol. 116. 1994. pp. 749-755. DOI: https://doi.org/10.1115/1.2919446
Q. J. Ge, B. Ravani. “Computer Aided Geometric Design of Motion Interpolants”. ASME Journal of Mechanical Design. Vol. 116. 1994. pp. 756-762. DOI: https://doi.org/10.1115/1.2919447
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.