Piecewise line-symmetric spherical motions for orientation interpolation in 5-Axis CNC tool path planning

Authors

  • Carlos Andrés Trujillo Suárez University of Antioquia
  • Qiaode Jeffrey Ge State University of New York at Stony Brook

DOI:

https://doi.org/10.17533/udea.redin.13658

Keywords:

biarcs, orientation interpolatio, computerized numerical control, path planning, quaternions

Abstract

This paper employs quaternion biarcs to interpolate a set of orientations with angular velocity constraints. The resulting quaternion curve represents a piecewise line-symmetric spherical motion with C1 continuity. The purpose of this effort is to put line-symmetric motions into use from the viewpoint of motion approximation and interpolation, and to present their potential applications in Computerized Numerical Control (CNC) machining simulation and tool path planning. Quaternion biarcs may be used to approximate B-spline quaternion curves that represent rational spherical motions that have applications in robot path planning, CAD/CAM and computer graphics.

|Abstract
= 116 veces | PDF (ESPAÑOL (ESPAÑA))
= 71 veces|

Downloads

Download data is not yet available.

Author Biographies

Carlos Andrés Trujillo Suárez, University of Antioquia

Department of Mechanical Engineering.

Qiaode Jeffrey Ge, State University of New York at Stony Brook

Department of Mechanical Engineering.

References

L. Piegl, W. Tiller. “Data Approximation Using Biarcs”. Engineering with Computers. Vol. 18. 2002. pp. 59-65. DOI: https://doi.org/10.1007/s003660200005

J. C. Latombe. Robot Motion Planning. Ed. Kluwer Academic Publishers. Boston, MA. 1991. pp. 5-11. DOI: https://doi.org/10.1007/978-1-4615-4022-9

T. Lozano Pérez. “Spatial Planning: A Configuration Space Approach”. IEEE Transactions on Computers. Vol. 32. 1983. pp. 108-120. DOI: https://doi.org/10.1109/TC.1983.1676196

F. Schwarzer, M. Saha, J. C. Latombe. “Exact Collision Checking of Robot Paths”. Algorithmic Foundations of Robotics. V. J. D. Boissonnat, J. Burdick, K. Goldberg, S. Hutchinson (editors). Ed. Springer. Berlin, Alemania. 2004. pp. 25-41. DOI: https://doi.org/10.1007/978-3-540-45058-0_3

A. Gasparetto, V. Zanotto. “A New Method for Smooth Trajectory Planning of Robot Manipulators”. Mechanism and Machine Theory. Vol. 42. 2007. pp. 455-471. DOI: https://doi.org/10.1016/j.mechmachtheory.2006.04.002

J. J. Chou, D. C. H. Yang. “On the Generation of Coordinated Motion of Five-Axis CNC/CMM Machines”. Journal of Engineering for Industry. Vol. 114. 1992. pp. 15-22. DOI: https://doi.org/10.1115/1.2899753

K. Morishige, K. Kase, Y. Takeuchi. “Collision-Free Tool Path Generation Using 2-Dimensional C-space for 5-Axis Control Machining”. The International Journal of Advanced Manufacturing Technology. Vol. 13. 1997. pp. 393-400. DOI: https://doi.org/10.1007/BF01179033

C. S. Jun, K. Cha, Y. S. Lee. “Optimizing Tool Orientations for 5-Axis Machining by ConfigurationSpace Search Method”. Computer-Aided Design. Vol. 35. 2003. pp. 549-566. DOI: https://doi.org/10.1016/S0010-4485(02)00077-5

Y. Koren, R. S. Lin. “Five-Axis Surface Interpolators”. Annals of the CIRP. Vol. 44. 1995. pp. 379-382. DOI: https://doi.org/10.1016/S0007-8506(07)62346-4

M. C. Tsai, M. Y. Cheng, K. F. Lin, N. C. Tsai. On Acceleration/Deceleration before Interpolation for CNC Motion Control. ICM ‘05, IEEE International Conference on Mechatronics. 2005. pp. 382-387.

B. Ravani, B. Roth. “Mappings of Spatial Kinematics”. ASME Journal of Mechanisms, Transmissions, and Automation in Design. Vol. 106. 1984. pp. 341-347. DOI: https://doi.org/10.1115/1.3267417

O. Bottema, B. Roth. Theoretical Kinematics. Ed. Dover Publications. New York. 1990. pp. 518-521.

J. M. McCarthy. An Introduction to Theoretical Kinematics. Ed. The MIT Press. Cambridge, MA. 1990. pp. 60-62.

Q. J. Ge, M. Sirchia. “Computer Aided Geometric Design of Two-Parameter Freeform Motions”. ASME Journal of Mechanical Design. Vol. 121. 1999. pp. 502-506. DOI: https://doi.org/10.1115/1.2829489

K. Shoemake. “Animating Rotations with Quaternion Curves”. ACM SIGGRAPH Computer Graphics. Vol. 19. 1985. pp. 245-254. DOI: https://doi.org/10.1145/325165.325242

F. Y. Lin, T. S. Lü. “Development of a Robot System for Complex Surfaces Polishing Based on CL Data”. The International Journal of Advanced Manufacturing Technology. Vol. 26. 2005. pp. 1132-1137. DOI: https://doi.org/10.1007/s00170-004-2088-5

M. C. Ho, Y. R. Hwang, C. H. Hu. “Five-Axis Tool Orientation Smoothing Using Quaternion Interpolation Algorithm”. International Journal of Machine Tools and Manufacture. Vol. 43. 2003. pp. 1259-1267. DOI: https://doi.org/10.1016/S0890-6955(03)00107-X

W. Wang, B. Joe. “Orientation Interpolation in Quaternion Space Using Spherical Biarcs”. Proceedings Graphics Interface’93. Ed. Morgan Kaufmann. Toronto, Canadá. 1993. pp. 24-32.

B. Jüttler. “Visualization of Moving Objects Using Dual Quaternion Curves”. Computers and Graphics. Vol. 18. 1994. pp. 315-326. DOI: https://doi.org/10.1016/0097-8493(94)90033-7

S. Li, Q. J. Ge. “Rational Bézier Line-Symmmetric Motions”. ASME Journal of Mechanical Design. Vol. 127. 2005. pp. 222-226. DOI: https://doi.org/10.1115/1.1798251

A. Purwar, Q. J. Ge. “On the Effect of Dual Weights in Computer Aided Design of Rational Motions”. ASME Journal of Mechanical Design. Vol. 127. 2005. pp. 967-972. DOI: https://doi.org/10.1115/1.1906263

J. Rossignac, A. Requicha. “Piecewise Circular Curves for Geometric Modeling”. IBM Journal of Research and Development. Vol. 31. 1987. pp. 296-313. DOI: https://doi.org/10.1147/rd.313.0296

G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. 4th ed. Ed.Academic Press. San Diego, CA. 1996. pp. 196- 211.

R. Klass, P. Schramm. “Numerically-Controlled Milling of CAD Surface Data”. Geometric Modeling: Methods and Applications. H. Hagen, D. Roller (editors). Ed. Springer-Verlag. New York, USA. 1991. pp. 213-225. DOI: https://doi.org/10.1007/978-3-642-76404-2_9

W. Zhang, Y. F. Zhang, Q. J. Ge. “Interference-Free Tool Path Generation for 5-Axis Sculputured Surface Machining Using Rational Bézier Motions of a FlatEnd Cutter”. International Journal of Production Research. Vol. 43. 2005. pp. 4103-4124. DOI: https://doi.org/10.1080/00207540500168188

L. Piegl, W. Tiller. The NURBS Book. Ed. Springer. Berlin, Alemania. 1995. pp. 382-404. DOI: https://doi.org/10.1007/978-3-642-97385-7

H. Akima. “A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures”. Journal of the ACM. Vol. 17. 1970. pp. 589-602. DOI: https://doi.org/10.1145/321607.321609

T. Arney. Dynamic Path Planning and Execution Using B-Splines. ICIAFS 2007, Third International Conference on Information and Automation for Sustainability. 2007. pp. 1-6. DOI: https://doi.org/10.1109/ICIAFS.2007.4544771

Q. J. Ge, B. Ravani. “Geometric Construction of Bézier Motions”. ASME Journal of Mechanical Design. Vol. 116. 1994. pp. 749-755. DOI: https://doi.org/10.1115/1.2919446

Q. J. Ge, B. Ravani. “Computer Aided Geometric Design of Motion Interpolants”. ASME Journal of Mechanical Design. Vol. 116. 1994. pp. 756-762. DOI: https://doi.org/10.1115/1.2919447

Published

2012-11-22

How to Cite

Trujillo Suárez, C. A., & Jeffrey Ge, Q. (2012). Piecewise line-symmetric spherical motions for orientation interpolation in 5-Axis CNC tool path planning. Revista Facultad De Ingeniería Universidad De Antioquia, (60), 62–71. https://doi.org/10.17533/udea.redin.13658