Development and implementation of a laser system for dynamic characterization and displacement measurement of civil structures

Authors

  • Jean Michel Franco University of Valle
  • Daniel Gómez University of Valle
  • Jorge Hernán Murcia University of Valle
  • Peter Thomson University of Valle
  • Johannio Marulanda University of Valle

DOI:

https://doi.org/10.17533/udea.redin.13671

Keywords:

modal identification, structural health monitoring, laser sensors

Abstract

Instrumentation and vibration monitoring of civil structures has gained importance during the last decades due to potential applications in modal identification and structural health monitoring. The identification of dynamic properties of structures allows numerical models to be updated whereas structural health monitoring allows damage in structures to be both identified and characterized with the goal of anticipated lower-cost interventions. Accelerometers are the most common instruments used in civil structures due to the fact they can be attached directly to the structure without the need of an independent fixed frame of reference. In cases where values of displacements are desired, they are often estimated indirectly through double numerical integration of the measured accelerations. However these numerical methods commonly introduce considerable errors in the results. This paper presents the development, validation and real-scale implementation of a novel system for direct displacement measurements of civil structures. The system consists of low-cost laser pointers that are attached to the structure, a screen and video camera and image processing algorithms that run on a laptop PC. The validation of the system was carried out with a series of laboratory tests and the comparative analysis of results using reference instruments. The system was implemented on a pedestrian bridge in Cali, Colombia, and the displacements obtained with the laser system are compared with those estimated from accelerations measurements. The results show that the proposed system is a precise low-cost alternative for instrumentation applications in civil engineering.

|Abstract
= 187 veces | PDF (ESPAÑOL (ESPAÑA))
= 63 veces|

Downloads

Download data is not yet available.

Author Biographies

Jean Michel Franco, University of Valle

Research Group on Seismic Engineering, Wind Engineering and Intelligent Structures, G-7, School of Civil Engineering and Geomatics.

Daniel Gómez, University of Valle

Research Group on Seismic Engineering, Wind Engineering and Intelligent Structures, G-7, School of Civil Engineering and Geomatics.

Jorge Hernán Murcia, University of Valle

Research Group on Seismic Engineering, Wind Engineering and Intelligent Structures, G-7, School of Civil Engineering and Geomatics.

Peter Thomson, University of Valle

Research Group on Seismic Engineering, Wind Engineering and Intelligent Structures, G-7, School of Civil Engineering and Geomatics.

Johannio Marulanda, University of Valle

Research Group on Seismic Engineering, Wind Engineering and Intelligent Structures, G-7, School of Civil Engineering and Geomatics.

References

D. Gómez, J. Marulanda, P. Thomson. “Sistemas de control para la protección de estructuras civiles sometidas a cargas dinámicas”. Revista Dyna. 2008. Vol. 75. pp. 13.

J. A. Marulanda, J. C. Marulanda, P. Thomson. “Monitoreo de Salud Estructural”. Ingeniería y Competitividad. Vol. 2. 2000. pp. 7. DOI: https://doi.org/10.25100/iyc.v2i2.2342

D. García, J. J. Orteu, L. Penazzi. “A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming”. Journal of Materials Processing Technology. Vol. 125-126. 2002. pp. 736-742. DOI: https://doi.org/10.1016/S0924-0136(02)00380-1

A. Wahbeh, J. P. Caffrey, S. F. Masri. “A vision-based approach for the direct measurement of displacements in vibrating systems”. Smart Mater. Struct.Vol. 12. 2003. pp. 10. DOI: https://doi.org/10.1088/0964-1726/12/5/016

J. J. Lee, M. Shinozuka. “Real-Time Displacement Measurement of a Flexible Bridge Using Digital Image Processing Techniques”. Experimental mechanics. Vol. 46. 2006. pp. 10. DOI: https://doi.org/10.1007/s11340-006-6124-2

V. Ferrari, D. Marioli, A.Taroni. “Displacement Sensor Based on Pyroelectric Thick Films and Contactless Light-Spot Cursor”. In Proceedings of the IEEE Instrumentation and Measurement Technology Conference Budapest.(Hungary). Vol. 1. 2001. pp. 277-281.

A. Depari, P. Ferrari, V. Ferrari, A. Flammini, A. Ghisla, D. Marioli, A. Taroni. “Digital signal processing for biaxial position measurement with a pyroelectric sensor array”. IEEE Transactions on Instrumentation and Measurement.Vol. 55. 2006. pp. 501-506. DOI: https://doi.org/10.1109/TIM.2006.864252

A. Nickitopoulou, K. Protopsalti, S. Stiros. “Monitoring dynamic and quasi-static deformations of large flexible engineering structures with GPS: Accuracy, limitations and promises”. Engineering Structures.Vol. 28. 2006.pp. 12. DOI: https://doi.org/10.1016/j.engstruct.2006.02.001

T. C. Hutchinson, S. R. Chaudhuri, F. Kuester, S. Auduong. “Light-Based Motion Tracking of Equipment Subjected to Earthquake Motions”. Journal of computing in civil engineering © asce.Vol. 19. 2005.pp. 12. DOI: https://doi.org/10.1061/(ASCE)0887-3801(2005)19:3(292)

J. J. Lee, M. Shinozuka. “A vision-based system for remote sensing of bridge displacement”. NDT&E International. Vol. 39. 2006. pp. 7. DOI: https://doi.org/10.1016/j.ndteint.2005.12.003

P. Avitabile, C. Niezrecki, M. Helfrick, C. Warren, P. Pingle, “Noncontact Measurement Techniques for Model Correlation”. Sound & vibration. Vol. 44. 2010.pp. 6.

J. L. Semmlow. Biosignal and Biomedical Image Processing MATLAB based Applications. Ed. Marcel Dekker. 2006. pp. 66-72.

R. Pappa, T. Jones, J. Black, A. Walford, S. Robson, M. Shortis “Photogrammetry Methodology Development for Gossamer Spacecraft Structures”. Sound and Vibration. Vol. 36. 2002. pp. 11. DOI: https://doi.org/10.2514/6.2002-1375

W. González, M. Eddins. Digital Image Processing Using Matlab. 2a. ed. Ed.Gatesmark Publishing. 2005.

J. M. Caicedo. Displacement Measurements in Civil Structures Using Digital Cameras and Lasers.Proceedings of the IMAC XXIII Conference. January 31-February 3. Orlando, Florida. 2005. pp. 7.

J. M. Franco, A. R. Ortiz, D. Gómez, P.Thomson. Evaluación de las vibraciones producidas por las personas en el puente peatonal del Club Noel enCali, Colombia. In Proceedings of the III Simposio internacional sobre diseño y construcción de puentes Bucaramanga. Diciembre 2 al 4. Colombia. 2009. pp. 18.

U. S. Paulsen, O. Erne, T.Schmidt. Wind Turbine Operational and Emergency Stop Measurements Using Point Tracking Videogrammetry.In Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics. Albuquerque. June 1-4. Estados Unidos. 2009. pp. 10.

J. Y. Bouguet “Camera Calibration Toolbox for Matlab”. Disponible en: http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples. Consultado en 15 de julio de 2010.

A. M. Fox. “Atomic and laser physics part II: laser Physics”.Disponible en: http://www.mark-fox.staff.shef.ac.uk/PHY332/laser_notes.pdf. Consultado en 15 julio de 2010.

S. Westland, C. Ripamonti. Computational Colour Science using MATLAB. John Wiley & Sons, Ltda. 2004. pp. 4-8. DOI: https://doi.org/10.1002/0470020326

P. L. Rosin, T. Ellis. “Image difference threshold strategies and shadow detection”. Disponible en: http://users.cs.cf.ac.uk/Paul.Rosin/resources/papers/shadows.pdf. Consultado en 15 de julio de 2010.

MATLAB version r2008a. Natick, Massachusetts: The MathWorks Inc. Massachusetts. 2008. pp. 195.

S. Qureshi. Embedded Image Processing on the TMS320C6000™ DSP. Springer Verlag. 2005. pp. 16-21. DOI: https://doi.org/10.1007/b107069

Published

2012-11-22

How to Cite

Franco, J. M., Gómez, D., Murcia, J. H., Thomson, P., & Marulanda, J. (2012). Development and implementation of a laser system for dynamic characterization and displacement measurement of civil structures. Revista Facultad De Ingeniería Universidad De Antioquia, (60), 170–181. https://doi.org/10.17533/udea.redin.13671