Adaptive fuzzy control applied to a fermentation system of continuous alcohol flow

Authors

  • Andrés Escobar Díaz Francisco José de Caldas District University
  • Cesar Hernández Francisco José de Caldas District University
  • Juan Pablo Arguello Fajardo Francisco José de Caldas District University

DOI:

https://doi.org/10.17533/udea.redin.14604

Keywords:

controller, fuzzy logic, adaptive control, inference, inverse model, strategy of tuning, learning

Abstract

The FRMLC, Fuzzy Reference Model Learning Control has been studied as a method for tuning fuzzy controllers. Its performance has been evaluated in a fermentation system with continuous alcohol fl ow which is characterized as a non lineal dynamics. Parameters vary with time in non lineal dynamics. A method of innovative tuning was employed which implicates a Matlab development that facilitates the study of the control technique FRMLC. It allowed building tuning methodologies for the application of that technique in different processes.

|Abstract
= 169 veces | PDF (ESPAÑOL (ESPAÑA))
= 79 veces|

Downloads

Download data is not yet available.

Author Biographies

Andrés Escobar Díaz, Francisco José de Caldas District University

Faculty of Technology.

Cesar Hernández, Francisco José de Caldas District University

Faculty of Technology.

Juan Pablo Arguello Fajardo, Francisco José de Caldas District University

Faculty of Technology.

References

K. Passino, S. Yurkovich. Fuzzy control. Ed. AddisonWesley. California. USA. 1998. pp. 522-532.

G. Muñoz Quiñones, J. Ballén Salamanca. Diseño e implementación de un controlador difuso autosintonizado sobre microcontroladores, aplicado al control del péndulo invertido. Trabajo de pregrado. Universidad Distrital. Bogotá. 2003. pp. 68-89.

P. Antsaklis, K. Passino. An introduction to intelligent and autonomous control. Ed. Kluwer Academic Publishers. Norwell (USA). 1993. pp. 427-452.

W. Li-Xin. A course in fuzzy systems and control. Ed. Prentice Hall. New Jersey (USA). 1997. pp. 424-476.

R. L. Jeffey. “Fuzzy reference model learning control”. Journal of Intelligent and Fuzzy Systems. Vol.4-1. 1996. pp. 33-47. DOI: https://doi.org/10.3233/IFS-1996-4103

S. Abhishek. A multi-scale approach to fed-batch bioreactor control. Tesis de Maestria. Universidad de Pittsburgh. Pennsylvania (USA). 2002. pp. 71-88.

A. Kwong, M. Passino. “Dynamically focused fuzzy learning control”. IEEE transactions on system man and cybernetics. Vol. 26. 1996. pp. 53-74. DOI: https://doi.org/10.1109/3477.484438

L. Zadeh. The birth and evolution of fuzzy logic (FL), soft computing (SC) and computing with words (CW): a personal perspective. Ed. World Scientifi c Publishing Co. New Jersey (USA). 1996. pp. 819-843. DOI: https://doi.org/10.1142/9789814261302_0044

P. Dadone. Design optimization of fuzzy logic systems. Tesis de Doctorado. Virginia Polytechnic Institute and State University. Blacksburg. VA. 2001. pp. 64-97.

R. L. Jeeffey, K. Passino, S. Yurkovich. “Fuzzy learning control to antiskid braking system”. IEEE transactions on control. Vol.1-2. 1993. pp. 122-129. DOI: https://doi.org/10.1109/87.238405

K. Tanaka, H. Wang. Fuzzy control system design and analysis. Ed. Jhon Wiley & Sons. New York (USA). 2001. pp. 320-361.

J. Mendel. “Fuzzy logic system for engineering: a tutorial”. Proceeding of the IEEE. Vol. 83. 1995. pp. 345-377. DOI: https://doi.org/10.1109/5.364485

I. Queinnec, B. Dahhou, Y. Sevely. “Theoretical and experimental results in optimization of fedbatch fermentation process”. Journal of Systems Engineering. Vol.1. 1991. pp. 31-40.

Published

2013-02-27

How to Cite

Escobar Díaz, A., Hernández, C., & Arguello Fajardo, J. P. (2013). Adaptive fuzzy control applied to a fermentation system of continuous alcohol flow. Revista Facultad De Ingeniería Universidad De Antioquia, (58), 105–113. https://doi.org/10.17533/udea.redin.14604