Software agents based simulation for the assessment of technical indicators

Authors

  • Alejandro Escobar National University of Colombia
  • Julián Moreno National University of Colombia
  • Sebastián Múnera National University of Colombia

DOI:

https://doi.org/10.17533/udea.redin.14606

Keywords:

software agents, technical analysis, continuous double auction, simulation

Abstract

Considering the inconvenients that the assessment of technical indicators may handle in a real stock market, an agent based simulation model is presented in this document as an alternative where two micro aspects are considered for this kind of systems: agents’ decision making mechanisms and the continuous double auction protocol through which transactions are made. In particular, the following indicators are analyzed in an empirical way: Simple, Double and Triple Weighted Moving Averages; Momentum, ROC, MACD and RSI throughout a series of simulations for 280 agents adding also external factors that may affect prices by using a Brownian motion model.

|Abstract
= 156 veces | PDF (ESPAÑOL (ESPAÑA))
= 72 veces|

Downloads

Download data is not yet available.

References

A. Álvarez. Análisis bursátil con fi nes especulativos: un enfoque técnico moderno. Ed. Limusa. Madrid. 2007. pp. 20-49.

S. Van der Hoog. On multi-agent based simulation. Working Paper, Center for Non-Linear Dynamics in Economics and Finance, Department of Quantitative Economics, University of Amsterdam, The Netherlands. 2004. http://departments.oxy.edu/cogsci/courses/2008/295/readings/mabs.pdf. Consultada el 24 de mayo de 2010.

L. Tesfatsion. “Agent-Based Computational Economics: Growing Economies from the Bottom Up”. Artifi cial Life. Vol. 8. 2002. pp. 55-82. DOI: https://doi.org/10.1162/106454602753694765

P. Davidsson. “Agent Based Social Simulation: A Computer Science View”. Journal of Artifi cial Societies and Social Simulation. Vol. 5. 2002. http://jasss.soc.surrey.ac.uk/5/1/7.html. Consultada el 22 de junio de 2010.

M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons. Chichester (England). 2002. pp. 15-42.

M. Raberto, S. Cincotti. “Modeling and simulation of a double auction artifi cial fi nancial market”. Physica A. Vol. 355. 2005. pp. 34-45. DOI: https://doi.org/10.1016/j.physa.2005.02.061

T. Xiao Guo. An agent-based simulation of doubleauction markets. Master thesis. University of Toronto. 2005. pp. 17-30.

B. LeBaron. “Agent-based Financial Markets: Matching Stylized Facts with Style”. Post Walrasian Macroeconomics: Beyond the DSGE Model. Ed. Cambridge University Press. Cambridge 2006. pp. 221-235. DOI: https://doi.org/10.1017/CBO9780511617751.013

B. Llacay, G. Peffer. “Simulación realista de los mercados fi nancieros con sistemas multi-agentes”. Working Paper. Universitat de Barcelona. 2008. http://hdl.handle.net/2445/4821. Consultada el 29 de mayo de 2010.

M. Yokoo, Y. Sakurai, S. Matsubara. “Robust Double Auction Protocol against False-name bids”. Proceedings of the 21st IEEE International Conference on Distributed Computing Systems (ICDCS-2001). Phoenix (AZ) 2001. pp. 137-145.

P. Wurman, W. Walsh, M. Wellman. “Flexible double auctions for electronic commerce: Theory and implementation”. Decision Support Systems. Vol. 24. 1998. pp. 17-27. DOI: https://doi.org/10.1016/S0167-9236(98)00060-8

M. F. M. Osborne. “Brownian Motion in the Stock Market”. Operations Research. Vol. 7. 1959. pp. 145- 173. DOI: https://doi.org/10.1287/opre.7.2.145

J. Moreno, J. Velásquez, D. Ovalle. “Una Aproximación Metodológica para la Construcción de Modelos de Simulación Basados en el Paradigma Multi-Agente”. Revista Avances en Sistemas e Informática. Vol. 4. 2007. pp. 145-154.

F. Bellifemine, A. Poggi, G. Rimassa. “JADE: A FIPAcompliant agent framework”. Proceedings of the 4th International Conference on Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM). London (UK). 1999. pp. 97-108.

Published

2013-02-27

How to Cite

Escobar, A., Moreno, J., & Múnera, S. (2013). Software agents based simulation for the assessment of technical indicators. Revista Facultad De Ingeniería Universidad De Antioquia, (58), 123–132. https://doi.org/10.17533/udea.redin.14606