Sulphuric acid leaching of mechanically activated chalcopyrite

Authors

  • Danny Guzmán University of Atacama
  • Stella Ordoñez University of Santiago de Chile
  • Claudio Aguilar Southern University of Chile
  • Paula Rojas Pontifical Catholic University of Valparaíso
  • Daniel Serafini University of Santiago de Chile
  • Washington Silva University of Atacama
  • Claudio Díaz University of Atacama

DOI:

https://doi.org/10.17533/udea.redin.14650

Keywords:

mechanical activation, CuFeS2, X-ray diffraction, leaching

Abstract

In order to study the effect of mechanical activation on the sulphuric acid leaching of CuFeS2, four samples were milled using an Atritor mill during 1, 5, 8, and 15 h. The powders were microstructural and morphologically characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The samples were leached using a solution of H2SO4 (0.54 M) at 298 K. The Cu+2 concentration was determined by means of atomic absorption spectrophotometry. The results obtained indicated that the increase in milling time results in increased recovery of Cu. The maximum recovery of Cu was 38.2 % for a milling time of 15 h.

|Abstract
= 137 veces | PDF (ESPAÑOL (ESPAÑA))
= 83 veces|

Downloads

Download data is not yet available.

Author Biographies

Danny Guzmán, University of Atacama

Metallurgy Department.

Stella Ordoñez, University of Santiago de Chile

Department of Metallurgical Engineering.

Claudio Aguilar, Southern University of Chile

Institute of Thermomechanical Materials and Processes.

Paula Rojas, Pontifical Catholic University of Valparaíso

School of Mechanical Engineering.

Daniel Serafini, University of Santiago de Chile

Physics department.

Washington Silva, University of Atacama

Metallurgy department.

Claudio Díaz, University of Atacama

Physics department.

References

A. G. Smekal. “Zum mechanischen and chemischen Verhalten von Calcitspaltflächen”. Naturwissenschaften. Vol. 39. 1952. pp. 428-429. DOI: https://doi.org/10.1007/BF00594682

H. Hu, Q. Chen, Z, Yin, Y. He, B. Huang. “Mechanism of mechanical activation for sulfides ores”. Trans. Nonferrous Met. Soc. China. Vol. 17. 2007. pp. 205-213. DOI: https://doi.org/10.1016/S1003-6326(07)60073-9

J. K. Gerlach, E. D. Gock. “Leaching behavior of mechanically activated sphalerite”. Ger. Pat. N° 2.138,143. 1973.

P. Baláz, I. Ebert. “Oxidative leaching of mechanically activated sphalerite”. Hydrometallurgy. Vol. 27. 1991. pp. 141-150. DOI: https://doi.org/10.1016/0304-386X(91)90062-Q

P. Baláz. “Influence of solid state properties on ferric chloride leaching of mechanically activated galena”. Hydrometallurgy. Vol. 40. 1996. pp. 359-368. DOI: https://doi.org/10.1016/0304-386X(95)00011-5

J. Ficeriová, P. Baláz, E. Boldizárova. “Combined mechanochimical and thiosulphate leaching of silver from a complex sulphide concentrate”. Int. J. Miner. Process. Vol. 76. 2005. pp. 260-265. DOI: https://doi.org/10.1016/j.minpro.2005.01.005

M. Achimovicová, P. Baláz, J. Briancín. “The influence of mechanical activation of chalcopyrite on the selective leaching of copper by sulphuric acid”. Metabk. Vol. 45. 2006. pp. 9-12.

M. Achimovicová, P. Baláz. “Influence of mechanical activation on selectivity of acid leaching of arsenopyrite”. Hydrometallurgy. Vol. 77. 2005. pp. 3-7. DOI: https://doi.org/10.1016/j.hydromet.2004.09.008

P. Baláz. “Mechanical activation in hydrometallurgy”. Int. J. Miner. Process. Vol. 72. 2003. pp. 341-354. DOI: https://doi.org/10.1016/S0301-7516(03)00109-1

G. Richmond, D. Dreisinger. “Processing of copper sulfide ores by autoclave leaching followed by extraction and electrowinning”. Australian Pat. Nº 749257. 2002.

D. Dreisinger. “Copper leaching from primary sulfides: Options for biological and chemical extraction of copper”. Hydrometallurgy. Vol. 83. 2006. pp. 10-20. DOI: https://doi.org/10.1016/j.hydromet.2006.03.032

J. Peacey, G. Xian-Jian, E. Robles. “Copper hydrometallurgy - current status, preliminary economics, future direction and positioning versus smelting”. Trans. Nonferrous Met. Soc. China. Vol. 14. 2004. pp. 560-569.

B. Cullity. Elements of X ray diffraction. Ed. Addison-Wesley Publishing Co. Menlo Park (CA). 1978. pp. 281-295.

C. Suryanarayana. Mechanical alloying and milling. Ed. Marcel Dekker. New York. 2004. pp. 269-332. DOI: https://doi.org/10.1201/9780203020647.ch12

A. N. Buckley, R. Woods, P. E. Richardson, S. Srinivasan. Electrochemical in minerals and metals processing. Ed. Electrochemical Society. New York. 1984. pp. 286-302.

C. Galán, A. Ortiz, F. Guiberteau, L. Shaw. “Crystallite size refinement of ZrB2 by high-energy ball milling”. J. Am. Ceram. Soc. Vol. 92. 2009. pp. 3114–3117. DOI: https://doi.org/10.1111/j.1551-2916.2009.03352.x

L. Lü, M. O. Lai. Mechanical alloying. Ed. Kluwer academic publishers. New York. 1998. pp. 28-29. DOI: https://doi.org/10.1007/978-1-4615-5509-4

C. Kluber, A. Parker, W. Vanbronswijk, H. Watling. “Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy”. Int. J. Miner. Process. Vol. 62. 2001. pp. 65-94. DOI: https://doi.org/10.1016/S0301-7516(00)00045-4

Published

2013-02-28

How to Cite

Guzmán, D., Ordoñez, S., Aguilar, C., Rojas, P., Serafini, D., Silva, W., & Díaz, C. (2013). Sulphuric acid leaching of mechanically activated chalcopyrite. Revista Facultad De Ingeniería Universidad De Antioquia, (56), 32–39. https://doi.org/10.17533/udea.redin.14650